scholarly journals Genome-Wide Identification and Bioinformatics Characterization of Superoxide Dismutases in the Desiccation-Tolerant Cyanobacterium Chroococcidiopsis sp. CCMEE 029

2021 ◽  
Vol 12 ◽  
Author(s):  
Alessandro Napoli ◽  
Federico Iacovelli ◽  
Claudia Fagliarone ◽  
Gianmarco Pascarella ◽  
Mattia Falconi ◽  
...  

A genome-wide investigation of the anhydrobiotic cyanobacterium Chroococcidiopsis sp. CCMEE 029 identified three genes coding superoxide dismutases (SODs) annotated as MnSODs (SodA2.1 and SodA2.2) and Cu/ZnSOD (SodC) as suggested by the presence of metal-binding motifs and conserved sequences. Structural bioinformatics analysis of the retrieved sequences yielded modeled MnSODs and Cu/ZnSOD structures that were fully compatible with their functional role. A signal-peptide bioinformatics prediction identified a Tat signal peptide at the N-terminus of the SodA2.1 that highlighted its transport across the thylakoid/cytoplasmic membranes and release in the periplasm/thylakoid lumen. Homologs of the Tat transport system were identified in Chroococcidiopsis sp. CCMEE 029, and the molecular docking simulation confirmed the interaction between the signal peptide of the SodA2.1 and the modeled TatC receptor, thus supporting the SodA2.1 translocation across the thylakoid/cytoplasmic membranes. No signal peptide was predicted for the MnSOD (SodA2.2) and Cu/ZnSOD, thus suggesting their occurrence as cytoplasmic proteins. No FeSOD homologs were identified in Chroococcidiopsis sp. CCMEE 029, a feature that might contribute to its desiccation tolerance since iron produces hydroxyl radical via the Fenton reaction. The overall-overexpression in response to desiccation of the three identified SOD-coding genes highlighted the role of SODs in the antioxidant enzymatic defense of this anhydrobiotic cyanobacterium. The periplasmic MnSOD protected the cell envelope against oxidative damage, the MnSOD localized in the thylakoid lumen scavengered superoxide anion radical produced during the photosynthesis, while the cytoplasmic MnSOD and Cu/ZnSOD reinforced the defense against reactive oxygen species generated at the onset of desiccation. Results contribute to decipher the desiccation-tolerance mechanisms of this cyanobacterium and allow the investigation of its oxidative stress response during future space experiments in low Earth orbit and beyond.

2021 ◽  
Vol 22 (11) ◽  
pp. 5798
Author(s):  
Shoko Tokumoto ◽  
Yugo Miyata ◽  
Ruslan Deviatiiarov ◽  
Takahiro G. Yamada ◽  
Yusuke Hiki ◽  
...  

The Pv11, an insect cell line established from the midge Polypedilum vanderplanki, is capable of extreme hypometabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11. The HSF1-knockout cells exhibit a reduced desiccation survival rate, but this is completely restored in HSF1-rescue cells. By comparing mRNA profiles of the two cell lines, we reveal that HSF1 induces anhydrobiosis-related genes, especially genes encoding late embryogenesis abundant proteins and thioredoxins, but represses a group of genes involved in basal cellular processes, thus promoting an extreme hypometabolism state in the cell. In addition, HSF1 binding motifs are enriched in the promoters of anhydrobiosis-related genes and we demonstrate binding of HSF1 to these promoters by ChIP-qPCR. Thus, HSF1 directly regulates the transcription of anhydrobiosis-related genes and consequently plays a pivotal role in the induction of anhydrobiotic ability in Pv11 cells.


2021 ◽  
Author(s):  
Yi-Shi Liu ◽  
Yicheng Wang ◽  
Xiaoman Zhou ◽  
LinPei Zhang ◽  
Ganglong Yang ◽  
...  

Abstract We previously reported that glycosylphosphatidylinositol (GPI) biosynthesis is regulated by endoplasmic reticulum associated degradation (ERAD); however, the underlying mechanistic basis remains unclear. Based on a genome-wide CRISPR–Cas9 screen, we show that a widely expressed GPI-anchored protein CD55 precursor and ER-resident ARV1 together upregulate GPI biosynthesis under ERAD-deficient conditions. In cells defective in GPI transamidase, GPI-anchored protein precursors fail to obtain GPI, remaining the uncleaved GPI-attachment signal at the C-termini. We show that ERAD deficiency causes accumulation of the CD55 precursor, which in turn upregulates GPI biosynthesis, where the GPI-attachment signal peptide is the active element. Among the 32 GPI-anchored proteins tested, only the GPI-attachment signal peptides of CD55 and CD48 enhance GPI biosynthesis. ARV1 is essential for the GPI upregulation by CD55 precursor. Our data demonstrate an ARV1-dependent regulatory connection between GPI biosynthesis and precursors of select GPI-anchored proteins that are under the control of ERAD.


BMC Genomics ◽  
2022 ◽  
Vol 23 (1) ◽  
Author(s):  
Binbin Chen ◽  
Bryan Zong Lin Loo ◽  
Ying Ying Cheng ◽  
Peng Song ◽  
Huan Fan ◽  
...  

Abstract Background Proteases catalyze the hydrolysis of peptide bonds of proteins, thereby improving dietary protein digestibility, nutrient availability, as well as flavor and texture of fermented food and feed products. The lactobacilli Lactiplantibacillus plantarum (formerly Lactobacillus plantarum) and Pediococcus acidilactici are widely used in food and feed fermentations due to their broad metabolic capabilities and safe use. However, extracellular protease activity in these two species is low. Here, we optimized protease expression and secretion in L. plantarum and P. acidilactici via a genetic engineering strategy. Results To this end, we first developed a versatile and stable plasmid, pUC256E, which can propagate in both L. plantarum and P. acidilactici. We then confirmed expression and secretion of protease PepG1 as a functional enzyme in both strains with the aid of the previously described L. plantarum-derived signal peptide LP_0373. To further increase secretion of PepG1, we carried out a genome-wide experimental screening of signal peptide functionality. A total of 155 predicted signal peptides originating from L. plantarum and 110 predicted signal peptides from P. acidilactici were expressed and screened for extracellular proteolytic activity in the two different strains, respectively. We identified 12 L. plantarum signal peptides and eight P. acidilactici signal peptides that resulted in improved yield of secreted PepG1. No significant correlation was found between signal peptide sequence properties and its performance with PepG1. Conclusion The vector developed here provides a powerful tool for rapid experimental screening of signal peptides in both L. plantarum and P. acidilactici. Moreover, the set of novel signal peptides identified was widely distributed across strains of the same species and even across some closely related species. This indicates their potential applicability also for the secretion of other proteins of interest in other L. plantarum or P. acidilactici host strains. Our findings demonstrate that screening a library of homologous signal peptides is an attractive strategy to identify the optimal signal peptide for the target protein, resulting in improved protein export.


2019 ◽  
Vol 60 (12) ◽  
pp. 2707-2719 ◽  
Author(s):  
Chih-Ta Lin ◽  
Tao Xu ◽  
Shi-Lai Xing ◽  
Li Zhao ◽  
Run-Ze Sun ◽  
...  

Abstract Boea hygrometrica can survive extreme drought conditions and has been used as a model to study desiccation tolerance. A genome-wide transcriptome analysis of B. hygrometrica showed that the plant can survive rapid air-drying after experiencing a slow soil-drying acclimation phase. In addition, a weighted gene co-expression network analysis was used to study the transcriptomic datasets. A network comprising 22 modules was constructed, and seven modules were found to be significantly related to desiccation response using an enrichment analysis. Protein ubiquitination was observed to be a common process linked to hub genes in all the seven modules. Ubiquitin-modified proteins with diversified functions were identified using immunoprecipitation coupled with mass spectrometry. The lowest level of ubiquitination was noted at the full soil drying priming stage, which coincided the accumulation of dehydration-responsive gene BhLEA2. The highly conserved RY motif (CATGCA) was identified from the promoters of ubiquitin-related genes that were downregulated in the desiccated samples. An in silico gene expression analysis showed that the negative regulation of ubiquitin-related genes is potentially mediated via a B3 domain-containing transcription repressor VAL1. This study suggests that priming may involve the transcriptional regulation of several major processes, and the transcriptional regulation of genes in protein ubiquitination may play a hub role to deliver acclimation signals to posttranslational level in the acquisition of desiccation tolerance in B. hygrometrica.


Author(s):  
Shoko Tokumoto ◽  
Yugo Miyata ◽  
Ruslan Deviatiiarov ◽  
Takahiro G. Yamada ◽  
Yusuke Hiki ◽  
...  

Pv11, an insect cell line established from the midge Polypedilum vanderplanki, is capable of ametabolic desiccation tolerance, so-called anhydrobiosis. We previously discovered that heat shock factor 1 (HSF1) contributes to the acquisition of desiccation tolerance by Pv11 cells, but the mechanistic details have yet to be elucidated. Here, by analyzing the gene expression profiles of newly established HSF1-knockout and -rescue cell lines, we show that HSF1 has a genome-wide effect on gene regulation in Pv11. HSF1-knockout cells exhibit a reduced desiccation survival rate, but this is completely restored in HSF1-rescue cells. By comparing mRNA profiles of the two cell lines, we reveal that HSF1 induces anhydrobiosis-related genes, especially genes encoding late embryogenesis abundant proteins and thioredoxins, but represses a group of genes involved in basal cellular processes, thus promoting an ametabolic state in the cell. In addition, HSF1 binding motifs are enriched in the promoters of anhydrobiosis-related genes and we demonstrate binding of HSF1 to these promoters by ChIP-qPCR. Thus, HSF1 directly regulates the transcription of anhydrobiosis-related genes and consequently plays a pivotal role in the induction of anhydrobiotic ability in Pv11 cells.


2014 ◽  
Vol 226 (03) ◽  
Author(s):  
F Ponthan ◽  
D Pal ◽  
J Vormoor ◽  
O Heidenreich
Keyword(s):  

2007 ◽  
Vol 30 (4) ◽  
pp. 86
Author(s):  
M. Lanktree ◽  
J. Robinson ◽  
J. Creider ◽  
H. Cao ◽  
D. Carter ◽  
...  

Background: In Dunnigan-type familial partial lipodystrophy (FPLD) patients are born with normal fat distribution, but subcutaneous fat from extremities and gluteal regions are lost during puberty. The abnormal fat distribution leads to the development of metabolic syndrome (MetS), a cluster of phenotypes including hyperglycemia, dyslipidemia, hypertension, and visceral obesity. The study of FPLD as a monogenic model of MetS may uncover genetic risk factors of the common MetS which affects ~30% of adult North Americans. Two molecular forms of FPLD have been identified including FPLD2, resulting from heterozygous mutations in the LMNA gene, and FPLD3, resulting from both heterozygous dominant negative and haploinsufficiency mutations in the PPARG gene. However, many patients with clinically diagnosed FPLD have no mutation in either LMNA or PPARG, suggesting the involvement of additional genes in FPLD etiology. Methods: Here, we report the results of an Affymetrix 10K GeneChip microarray genome-wide linkage analysis study of a German kindred displaying the FPLD phenotype and no known lipodystrophy-causing mutations. Results: The investigation identified three chromosomal loci, namely 1q, 3p, and 9q, with non-parametric logarithm of odds (NPL) scores >2.7. While not meeting the criteria for genome-wide significance, it is interesting to note that the 1q and 3p peaks contain the LMNA and PPARG genes respectively. Conclusions: Three possible conclusions can be drawn from these results: 1) the peaks identified are spurious findings, 2) additional genes physically close to LMNA, PPARG, or within 9q, are involved in FPLD etiology, or 3) alternative disease causing mechanisms not identified by standard exon sequencing approaches, such as promoter mutations, alternative splicing, or epigenetics, are also responsible for FPLD.


Sign in / Sign up

Export Citation Format

Share Document