scholarly journals Simulation Research of Potential Contrast Agents for X-Ray Fluorescence CT with Photon Counting Detectors

2021 ◽  
Vol 9 ◽  
Author(s):  
Luo Yan ◽  
Feng Peng ◽  
Zhao Ruge ◽  
Zhang Yi ◽  
An Kang ◽  
...  

XFCT is a novel method for the early cancer detection. Increasing concentration of contrast agents and incident X-rays’ energy were used to improve detecting accuracy, which greatly increased the prevalence of contrast-induced nephropathy. Therefore, this research explores the adaptive contrast agents and uses Geant4 to simulate the imaging conditions of Pt, Bi, Gd, Ru, and Au for searching the lowest detectable concentration based on the fast multi-pinhole collimated XFCT (fmpc-XFCT) imaging system and low incident energy. Several imaging parameters including pinhole radius (0.7, 0.8, and 1 mm) were adjusted, and the optimized EM-TV algorithm was used to reconstruct XFCT images. It is found that Bi element is superior to other metal elements in terms of the contrast-to-noise ratio (CNR) and fluorescence efficiency, and the lowest concentration that can be detected is 0.12% with optimal parameters.

2021 ◽  
Vol 8 ◽  
Author(s):  
Zhidu Zhang ◽  
Xiaomei Zhang ◽  
Jinming Hu ◽  
Qiong Xu ◽  
Mohan Li ◽  
...  

In K-edge decomposition imaging for the multienergy system with the photon counting detectors (PCDs), the energy bins significantly affect the intensity of the extracted K-edge signal. Optimized energy bins can provide a better K-edge signal to improve the quality of the decomposition images and have the potential to reduce the amount of contrast agents. In this article, we present the Gaussian spectrum selection method (GSSM) for the multienergy K-edge decomposition imaging which can extract an optimized K-edge signal by optimizing energy bins compared with the conventional theoretical attenuation selection method (TASM). GSSM decides the width and locations of the energy bins using a simple but effective model of the imaging system, which takes the degraded energy resolution of the detector and the continuous x-ray spectrum into consideration. Besides, we establish the objective function, difference of attenuation to relative standard deviation ratio (DAR), to determine the optimal energy bins which maximize the K-edge signal. The results show that GSSM gets a better K-edge signal than TASM especially at the lower concentration level of contrast agents. The new method has the potential to improve the contrast and reduce the amount of contrast agents.


2012 ◽  
Vol 7 (08) ◽  
pp. E08001-E08001
Author(s):  
P Sievers ◽  
T Weber ◽  
T Michel ◽  
J Klammer ◽  
L Büermann ◽  
...  

2012 ◽  
Vol 7 (03) ◽  
pp. P03003-P03003 ◽  
Author(s):  
P Sievers ◽  
T Weber ◽  
T Michel ◽  
J Klammer ◽  
L Büermann ◽  
...  

2011 ◽  
Vol 18 (6) ◽  
pp. 923-929 ◽  
Author(s):  
Anna Bergamaschi ◽  
Roberto Dinapoli ◽  
Dominic Greiffenberg ◽  
Beat Henrich ◽  
Ian Johnson ◽  
...  

The MYTHEN single-photon-counting (SPC) detector has been characterized using the time-over-threshold (ToT) readout method,i.e.measuring the time that the signal produced by the detected X-rays remains above the comparator threshold. In the following it is shown that the ToT readout preserves the sensitivity, dynamic range and capability of background suppression of the SPC mode, while enhancing the count-rate capability, which is the main limitation of state-of-the-art SPC systems.


2002 ◽  
Vol 12 (3) ◽  
pp. 145-148
Author(s):  
C. Jorel ◽  
P. Feautrier ◽  
J.-C. Villégier ◽  
A. Benoit

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Petri Paakkari ◽  
Satu I. Inkinen ◽  
Miitu K. M. Honkanen ◽  
Mithilesh Prakash ◽  
Rubina Shaikh ◽  
...  

AbstractPhoton-counting detector computed tomography (PCD-CT) is a modern spectral imaging technique utilizing photon-counting detectors (PCDs). PCDs detect individual photons and classify them into fixed energy bins, thus enabling energy selective imaging, contrary to energy integrating detectors that detects and sums the total energy from all photons during acquisition. The structure and composition of the articular cartilage cannot be detected with native CT imaging but can be assessed using contrast-enhancement. Spectral imaging allows simultaneous decomposition of multiple contrast agents, which can be used to target and highlight discrete cartilage properties. Here we report, for the first time, the use of PCD-CT to quantify a cationic iodinated CA4+ (targeting proteoglycans) and a non-ionic gadolinium-based gadoteridol (reflecting water content) contrast agents inside human osteochondral tissue (n = 53). We performed PCD-CT scanning at diffusion equilibrium and compared the results against reference data of biomechanical and optical density measurements, and Mankin scoring. PCD-CT enables simultaneous quantification of the two contrast agent concentrations inside cartilage and the results correlate with the structural and functional reference parameters. With improved soft tissue contrast and assessment of proteoglycan and water contents, PCD-CT with the dual contrast agent method is of potential use for the detection and monitoring of osteoarthritis.


1996 ◽  
Vol 2 (2) ◽  
pp. 53-62 ◽  
Author(s):  
Henry N. Chapman ◽  
Jenny Fu ◽  
Chris Jacobsen ◽  
Shawn Williams

The methods of immunolabeling make visible the presence of specific antigens, proteins, genetic sequences, or functions of a cell. In this paper we present examples of imaging immunolabels in a scanning transmission x-ray microscope using the novel method of dark-field contrast. Colloidal gold, or silver-enhanced colloidal gold, is used as a label, which strongly scatters x-rays. This leads to a high-contrast dark-field image of the label and reduced radiation dose to the specimen. The x-ray images are compared with electron micrographs of the same labeled, unsectioned, whole cell. It is verified that the dark-field x-ray signal is primarily due to the label and the bright-field x-ray signal, showing absorption due to carbon, is largely unaffected by the label. The label can be well visualized even when it is embedded in or laying behind dense material, such as the cell nucleus. The resolution of the images is measured to be 60 nm, without the need for computer processing. This figure includes the x-ray microscope resolution and the accuracy of the label positioning. The technique should be particularly useful for the study of relatively thick (up to 10 μm), wet, or frozen hydrated specimens.


Sign in / Sign up

Export Citation Format

Share Document