scholarly journals NtMYB12 Positively Regulates Flavonol Biosynthesis and Enhances Tolerance to Low Pi Stress in Nicotiana tabacum

2020 ◽  
Vol 10 ◽  
Author(s):  
Zhaopeng Song ◽  
Yong Luo ◽  
Weifeng Wang ◽  
Ningbo Fan ◽  
Daibin Wang ◽  
...  
2010 ◽  
Vol 51 (3) ◽  
pp. 380-394 ◽  
Author(s):  
Xuemin Wang ◽  
Guankui Du ◽  
Xuming Wang ◽  
Yijun Meng ◽  
Yiyi Li ◽  
...  

2020 ◽  
Author(s):  
Pawel Sega ◽  
Katarzyna Kruszka ◽  
Dawid Bielewicz ◽  
Wojciech Karlowski ◽  
Przemyslaw Nuc ◽  
...  

Abstract Background: Small RNAs (sRNAs) are 18–24 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. Results: In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, p-value < 0.05) are represented by 162 (44.88 % of total differentially expressed small RNAs) molecules in shoot and 138 (7.14 %) in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, Bonferroni correction). In roots, a more abundant and diverse set of other sRNAs (1796 unique sequences, 0.13 % from total unique reads obtained under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (199 unique sequences, 0.01 %). More than 80 % of differentially expressed other sRNAs are upregulated in both organs. Additionally, in barley shoots, upregulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3’-5’ exonuclease). This suggests that most small RNAs may be generated upon endonucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identify 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools.Conclusions: Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi scarcity through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.


Forests ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 104
Author(s):  
Wanting Chen ◽  
Ranhong Chen ◽  
Ying Zhang ◽  
Jiaoyang Li ◽  
Mulualem Tigabu ◽  
...  

The study on the function and sequence of PHR1 (Phosphate Starvation Response gene 1) gene, which plays a central role in plant phosphorus (Pi) signal regulatory network, is of great significance to further study response mechanisms to Pi deficiency. In this work, the previously selected Pi-efficient Chinese fir clone M32 was used as research material to obtain the full-length sequence of ClPHR1 transcription factors in Chinese fir by RACE (Rapid Amplification of cDNA Ends) full-length cloning technique, and the structure, function and subcellular localization of ClPHR1 gene encoding protein were analyzed. The temporal and spatial expression characteristics of ClPHR1 transcription factors in Chinese fir under low Pi stress were also analyzed, and the overexpression of ClPHR1 gene in transgenic Arabidopsis thaliana was obtained to verify the function of ClPHR1 gene under low Pi stress. The results showed that the length of the ClPHR1 gene obtained by rapid amplification of cDNA ends technique was 1954 bp, of which 1512 bp was an open reading frame. ClPHR1 was predicted to be an unstable hydrophilic protein with only one possible transmembrane domain. The ClPHR1 gene had a highly conserved MYB-CC domain, which is similar to the PHR1 gene of other plants. Phylogenetic tree analysis showed that the sequence had high homology with PHR1 genes in the Prunus species. The ClPHR1 was expressed in all organs of Chinese fir, with the highest expression in the roots, followed by the leaves with the lowest expression in stems. ClPHR1 expression in roots was reduced dramatically at the beginning of Pi stress treatment and followed by an increase at 7days; in leaves, it increased dramatically at the beginning of Pi starvation treatment and showed a decreasing trend after 3 days; in stems, the expression level of ClPHR1 increased after 7 days of Pi stress treatment. The transient expression vector was introduced into plant cells, and it was found that ClPHR1 was located in the nucleus and was a MYB-CC transcription factor expressed in the cell nucleus. The ClPHR1 overexpression vector was constructed, and then introduced into Arabidopsis thaliana by agrobacterium infection inflorescence method. The expressions of Pi transporter genes, AtPHT1;1, AtPHT1;2, AtPHT1;8 and AtPHT1;9, was significantly higher in the overexpressing strain than that in the wild type strain. The results suggest that the ClPHR1 transcription factor could regulate the regulation of downstream Pi transporter gene and increase Pi utilization efficiency of the Chinese fir under Pi stress.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Lei Yan ◽  
Liang Su ◽  
Rui Li ◽  
Hao Li ◽  
Jianrong Bai ◽  
...  

Phosphate (Pi) deficiency in soil can have severe impacts on the growth, development, and production of maize worldwide. In this study, a cDNA-sequence-related amplified polymorphism (cDNA-SRAP) transcript profiling technique was used to evaluate the gene expression in leaves and roots of maize under Pi stress for seven days. A total of 2494 differentially expressed fragments (DEFs) were identified in response to Pi starvation with 1202 and 1292 DEFs in leaves and roots, respectively, using a total of 60 primer pairs in the cDNA-SRAP analysis. These DEFs were categorized into 13 differential gene expression patterns. Results of sequencing and functional analysis showed that 63 DEFs (33 in leaves and 30 in roots) were annotated to a total of 54 genes involved in diverse groups of biological pathways, including metabolism, photosynthesis, signal transduction, transcription, transport, cellular processes, genetic information, and organismal system. This study demonstrated that (1) the cDNA-SRAP transcriptomic profiling technique is a powerful method to analyze differential gene expression in maize showing advantageous features among several transcriptomic methods; (2) maize undergoes a complex adaptive process in response to low Pi stress; and (3) a total of seven differentially expressed genes were identified in response to low Pi stress in leaves or roots of maize and could be used in the genetic modification of maize.


BMC Genomics ◽  
2021 ◽  
Vol 22 (1) ◽  
Author(s):  
Pawel Sega ◽  
Katarzyna Kruszka ◽  
Dawid Bielewicz ◽  
Wojciech Karlowski ◽  
Przemyslaw Nuc ◽  
...  

Abstract Background Small RNAs (sRNAs) are 20–30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. Results In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) RNA-Seq data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, Bonferroni adjusted p-value < 0.05) are represented by 15 molecules in shoot and 13 in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, p-value Bonferroni correction < 0.05). In roots, a more abundant and diverse set of other sRNAs (DESs, 1796 unique sequences, 0.13% from the average of the unique small RNA expressed under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (DESs, 199 unique sequences, 0.01%). More than 80% of differentially expressed other sRNAs are up-regulated in both organs. Additionally, in barley shoots, up-regulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3′-5′ exonuclease). This suggests that most small RNAs may be generated upon nucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identifies 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools. Conclusions Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.


2009 ◽  
Vol 21 (11) ◽  
pp. 3554-3566 ◽  
Author(s):  
Yi-Fang Chen ◽  
Li-Qin Li ◽  
Qian Xu ◽  
You-Han Kong ◽  
Hui Wang ◽  
...  

2020 ◽  
Author(s):  
Pawel Sega ◽  
Katarzyna Kruszka ◽  
Dawid Bielewicz ◽  
Wojciech Karlowski ◽  
Przemyslaw Nuc ◽  
...  

Abstract Background: Small RNAs (sRNAs) are 20–30 nt regulatory elements which are responsible for plant development regulation and participate in many plant stress responses. Insufficient inorganic phosphate (Pi) concentration triggers plant responses to balance the internal Pi level. Results: In this study, we describe Pi-starvation-responsive small RNAs and transcriptome changes in barley (Hordeum vulgare L.) using Next-Generation Sequencing (NGS) RNA-Seq data derived from three different types of NGS libraries: (i) small RNAs, (ii) degraded RNAs, and (iii) functional mRNAs. We find that differentially and significantly expressed miRNAs (DEMs, p-value < 0.05) are represented by 162 (44.88 % of total differentially expressed small RNAs) molecules in shoot and 138 (7.14 %) in root; mainly various miR399 and miR827 isomiRs. The remaining small RNAs (i.e., those without perfect match to reference sequences deposited in miRBase) are considered as differentially expressed other sRNAs (DESs, p-value Bonferroni correction < 0.05). In roots, a more abundant and diverse set of other sRNAs (DESs, 1796 unique sequences, 0.13 % from total unique reads obtained under low-Pi) contributes more to the compensation of low-Pi stress than that in shoots (DESs, 199 unique sequences, 0.01 %). More than 80 % of differentially expressed other sRNAs are up-regulated in both organs. Additionally, in barley shoots, up-regulation of small RNAs is accompanied by strong induction of two nucleases (S1/P1 endonuclease and 3’-5’ exonuclease). This suggests that most small RNAs may be generated upon endonucleolytic cleavage to increase the internal Pi pool. Transcriptomic profiling of Pi-starved barley shoots identifies 98 differentially expressed genes (DEGs). A majority of the DEGs possess characteristic Pi-responsive cis-regulatory elements (P1BS and/or PHO element), located mostly in the proximal promoter regions. GO analysis shows that the discovered DEGs primarily alter plant defense, plant stress response, nutrient mobilization, or pathways involved in the gathering and recycling of phosphorus from organic pools.Conclusions: Our results provide comprehensive data to demonstrate complex responses at the RNA level in barley to maintain Pi homeostasis and indicate that barley adapts to Pi-starvation through elicitation of RNA degradation. Novel P-responsive genes were selected as putative candidates to overcome low-Pi stress in barley plants.


2020 ◽  
Author(s):  
Fuhua Fan ◽  
Xianwen Shang ◽  
Guijie Ding ◽  
Zijing Zhou ◽  
Jianhui Tan

Abstract Background Masson pine ( Pinus massoniana ) is primarily present in subtropical and tropical areas of China, which are severely deficient in inorganic phosphate (Pi). Although some studies identified transcriptomic and proteomic responses to Pi deficiency in Masson pine seedlings, different tissues, especially the roots, that exhibit primary responses to low-Pi stress, have not been well studied. To shed further light on the complex responses of Masson pine to Pi deficiency, a spatiotemporal experiment was performed to identify differentially expressed mRNAs and miRNAs under Pi-deficient conditions. Results Spatiotemporal analyses of 72 RNA sequencing libraries provided a comprehensive overview of the dynamic responses of Masson pine to low-Pi stress. Differentially expressed gene analysis revealed several high-affinity phosphate transporters and nitrate transporters, reflecting the crosstalk between nitrate and Pi homeostasis in plants. The MYB family was the most abundant transcription factor family identified. miRNA differential expression analysis identified several families that were associated with Pi deficiency, such as miR399. In addition, some other families, including novel miRNA families in Masson pine, were dramatically changed in response to Pi starvation. GO and KEGG analyses of these mRNAs and targets of miRNAs indicated that metabolic processes were most enriched under Pi deficiency. Conclusions This study provided abundant spatiotemporal transcriptomic information to functionally dissect the response of Masson pine seedlings to Pi deficiency, which will aid in further elucidation of the biological regulatory mechanisms of pines in response to low-Pi stress.


2018 ◽  
Vol 30 (5) ◽  
pp. 1062-1076 ◽  
Author(s):  
Qing Ye ◽  
Hui Wang ◽  
Tong Su ◽  
Wei-Hua Wu ◽  
Yi-Fang Chen

Sign in / Sign up

Export Citation Format

Share Document