scholarly journals Leaf Morphogenesis: Insights From the Moss Physcomitrium patens

2021 ◽  
Vol 12 ◽  
Author(s):  
Wenye Lin ◽  
Ying Wang ◽  
Yoan Coudert ◽  
Daniel Kierzkowski

Specialized photosynthetic organs have appeared several times independently during the evolution of land plants. Phyllids, the leaf-like organs of bryophytes such as mosses or leafy liverworts, display a simple morphology, with a small number of cells and cell types and lack typical vascular tissue which contrasts greatly with flowering plants. Despite this, the leaf structures of these two plant types share many morphological characteristics. In this review, we summarize the current understanding of leaf morphogenesis in the model moss Physcomitrium patens, focusing on the underlying cellular patterns and molecular regulatory mechanisms. We discuss this knowledge in an evolutionary context and identify parallels between moss and flowering plant leaf development. Finally, we propose potential research directions that may help to answer fundamental questions in plant development using moss leaves as a model system.

2014 ◽  
Vol 42 (2) ◽  
pp. 346-351 ◽  
Author(s):  
Dolf Weijers

Plants can grow complex and elaborate structures, in some species for thousands of years. Despite the diversity in form and shape, plants are built from a limited number of fundamental tissue types, and their arrangement is deeply conserved in the plant kingdom. A key question in biology is how these fundamental tissues, i.e. epidermal, ground and vascular tissue, are specified and organized in time and space. In the present paper, I discuss the use of the early Arabidopsis embryo as a model system to dissect the control of tissue formation and patterning, as well as the specification of the stem cells that sustain post-embryonic growth. I present recent insights into the molecules and mechanisms that control both the specification and the subsequent growth of the different cell types within the embryonic root. Finally, I discuss major unanswered questions and future challenges in using the embryo as a model to decipher the regulatory logic of plant development.


2003 ◽  
Vol 160 (3) ◽  
pp. 297-301 ◽  
Author(s):  
Sean W. Deacon ◽  
Anna S. Serpinskaya ◽  
Patricia S. Vaughan ◽  
Monica Lopez Fanarraga ◽  
Isabelle Vernos ◽  
...  

Kinesin II is a heterotrimeric plus end–directed microtubule motor responsible for the anterograde movement of organelles in various cell types. Despite substantial literature concerning the types of organelles that kinesin II transports, the question of how this motor associates with cargo organelles remains unanswered. To address this question, we have used Xenopus laevis melanophores as a model system. Through analysis of kinesin II–mediated melanosome motility, we have determined that the dynactin complex, known as an anchor for cytoplasmic dynein, also links kinesin II to organelles. Biochemical data demonstrates that the putative cargo-binding subunit of Xenopus kinesin II, Xenopus kinesin II–associated protein (XKAP), binds directly to the p150Glued subunit of dynactin. This interaction occurs through aa 530–793 of XKAP and aa 600–811 of p150Glued. These results reveal that dynactin is required for transport activity of microtubule motors of opposite polarity, cytoplasmic dynein and kinesin II, and may provide a new mechanism to coordinate their activities.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8751 ◽  
Author(s):  
Silke Morris ◽  
Niall D. Geoghegan ◽  
Jessica B.A. Sadler ◽  
Anna M. Koester ◽  
Hannah L. Black ◽  
...  

Insulin-stimulated glucose transport is a characteristic property of adipocytes and muscle cells and involves the regulated delivery of glucose transporter (GLUT4)-containing vesicles from intracellular stores to the cell surface. Fusion of these vesicles results in increased numbers of GLUT4 molecules at the cell surface. In an attempt to overcome some of the limitations associated with both primary and cultured adipocytes, we expressed an epitope- and GFP-tagged version of GLUT4 (HA–GLUT4–GFP) in HeLa cells. Here we report the characterisation of this system compared to 3T3-L1 adipocytes. We show that insulin promotes translocation of HA–GLUT4–GFP to the surface of both cell types with similar kinetics using orthologous trafficking machinery. While the magnitude of the insulin-stimulated translocation of GLUT4 is smaller than mouse 3T3-L1 adipocytes, HeLa cells offer a useful, experimentally tractable, human model system. Here, we exemplify their utility through a small-scale siRNA screen to identify GOSR1 and YKT6 as potential novel regulators of GLUT4 trafficking in human cells.


2021 ◽  
Vol 912 (1) ◽  
pp. 012103
Author(s):  
Elimasni ◽  
R A Nasution

Abstract Abstrak. Loquat (Eriobotrya japonica Lindl.) is a flowering plant that belongs to the Rosacea family. The loquat has many health benefits. Cultivation and information about loquat plants in Indonesia are still limited, so they are rarely found and known by the public. Limited information and data regarding loquat plants is also an obstacle to the development of loquat plants. Research on loquat plants aims to analyze the morphological characters in three districts, namely, Karo, Dairi, and Simalungun districts. This research was conducted using a descriptive method. The analysis of the morphological characteristics of loquat plants using morphological data scoring into binary data. The similarity between individuals was analyzed using clusters with the NTSYS program version 2.0 with the UPGMA method of the SimQual function. Morphological Observation Results Loquat plants (Eriobotrya japonica Lindl.) in Karo, Dairi, and Simalungun Districts have uniform characters in the morphology of stems, leaves, and flowers. However, the observed fruit and seed morphology showed different characters. Different characters exist in the shape of the fruit and seeds. The morphological similarity level of loquat plants was grouped at a similarity coefficient value of 95%. Clusters I and II have the highest similarity with a coefficient value of 100%. Cluster III has the lowest similarity with a coefficient value of 97%.


2005 ◽  
Vol 170 (5) ◽  
pp. 803-812 ◽  
Author(s):  
Anne Pacquelet ◽  
Pernille Rørth

Cadherin-mediated adhesion can be regulated at many levels, as demonstrated by detailed analysis in cell lines. We have investigated the requirements for Drosophila melanogaster epithelial (DE) cadherin regulation in vivo. Investigating D. melanogaster oogenesis as a model system allowed the dissection of DE-cadherin function in several types of adhesion: cell sorting, cell positioning, epithelial integrity, and the cadherin-dependent process of border cell migration. We generated multiple fusions between DE-cadherin and α-catenin as well as point-mutated β-catenin and analyzed their ability to support these types of adhesion. We found that (1) although linking DE-cadherin to α-catenin is essential, regulation of the link is not required in any of these types of adhesion; (2) β-catenin is required only to link DE-cadherin to α-catenin; and (3) the cytoplasmic domain of DE-cadherin has an additional specific function for the invasive migration of border cells, which is conserved to other cadherins. The nature of this additional function is discussed.


The article describes the morphological characteristics and biochemical parameters of a very little studied wild species Linum pubescens (downy flax). This representative of the genus Linum naturally grows in the eastern Mediterranean: Palestine, Syria, Lebanon, Israel, Turkey, Iraq, Greece, Cyprus, Albania. There are brief references to it in the description of the flora of these regions. In Israel, on natural populations of L. pubescens, studies of dimorphic heterostyly, anatomical features of the flower, mechanisms of pollination and incompatibility were carried out. However, other signs, including economically valuable ones, are not described in him. We were the first to study the species ex-situ in a field bank. It was found that in the arid conditions of the southeastern Steppe of Ukraine L. pubescens has a one-year development cycle, a height of 30 cm, 1.2 flowering stems, a bright pink flower with a diameter of 25 mm, a small slightly elongated box with a diameter of 2.7 mm, weight 1000 seeds is 0.6 g, and the leaf area is 218.9 mm2. Plants bloom in mid-July- September. Taking into account the rather large size, the bright color of the flower and the flowering period, we believe that the L. pubescens species has prospects of use as an ornamental flowering plant. In the resulting artificial population of L. pubescens, dimorphic heterostyly is clearly traced. Long and short pest morphs are clearly identified. L. pubescens seeds contain 24% protein and 35% oil. The fatty acid composition of the oil belongs to the "linum-type", like most other types of flax. With a low content of saturated acids (palmitic 6.7% and stearic 2.8%) and a significant predominance of unsaturated acids, especially linolenic up to 64%. It was revealed that this species has a dense non-cracking capsule. This trait is unusual for other flax varieties. Most annual and perennial species are characterized by moderate to severe cracking. Cultivated flax has a non-cracking boll, but not a hard one that breaks easily. It was found that less organic matter and more ash elements accumulate in the capsules and seeds of L. pubescens than in other species of the genus Linum. Probably, this feature, together with non-cracking, helps to better preserve fruits in difficult natural conditions and preserves seed germination for a long time. According to A.A. Zhuchenko, plant genetic resources are divided into six groups. At this stage, L. pubescen is classified as a wild weed relative. It was proposed to include L. pubescens in breeding work to create ornamental varieties in order to transfer it to the improved germplasm group in the future.


Sign in / Sign up

Export Citation Format

Share Document