scholarly journals Parametric Study of a Composite Skin for a Twist-Morphing Wing

Aerospace ◽  
2021 ◽  
Vol 8 (9) ◽  
pp. 259
Author(s):  
Peter L. Bishay ◽  
Christian Aguilar

Although the benefits of morphing wings have been proven in many studies in the last few decades, the wing skin design remains one of the challenges to advancing and implementing the morphing technology. This is due to the conflicting design requirements of high out-of-plane stiffness to withstand aerodynamic loads and low in-plane stiffness to allow morphing with the available actuation forces. Advancements in the design of hybrid and flexible composites might allow for design solutions that feature this balance in stiffness required for this application. These composites offer new design parameters, such as the number of plies, the fiber-orientation angle of each ply in the skin laminate, and the spatial distribution of the plies on the skin surface. This paper presents a parametric study of a composite skin for a twist-morphing wing. The skin is made of periodic laminated composite sections, called “Twistkins”, integrated in an elastomeric outer skin. The twisting deformation is localized in the elastomeric sections between the Twistkins. The design parameters considered are the number of plies in the composite Twistkins, the fiber-orientation angle of the plies, the torsional rigidity of the elastomer, the width ratio, and the number of elastomeric sections. The computational analysis results showed that the torsional compliance can be increased by increasing the width ratio, decreasing the number of elastomeric sections, number of composite plies and the elastomer’s torsional rigidity. However, this would also lead to a decrease in the out-of-plane stiffness. The nonlinearity and rates at which these parameters affect the skin’s behavior are highlighted, including the effect of the fiber-orientation angle of the laminate plies. Hence, the study guides the design process of this twist-morphing skin.

2014 ◽  
Vol 709 ◽  
pp. 144-147
Author(s):  
Ying Tao Chen ◽  
Song Xiang ◽  
Wei Ping Zhao

Optimization of fiber orientation angle is studied to minimize the deflection of the laminated composite plates by the genetic algorithm. The objective function of optimization problem is the minimum deflection of laminated composite plates under the external load; optimization parameters are fiber orientation angle of laminated composite plates. The results for the optimal fiber orientation angle and the minimum deflection of the 4-layer plates are presented to demonstrate the validity of present method.


Author(s):  
Pham Dinh Nguyen ◽  
Quang-Viet Vu ◽  
George Papazafeiropoulos ◽  
Hoang Thi Thiem ◽  
Pham Minh Vuong ◽  
...  

This paper proposes an optimization procedure for maximization of the biaxial buckling load of laminated composite plates using the gradient-based interior-point optimization algorithm. The fiber orientation angle and the thickness of each lamina are considered as continuous design variables of the problem. The effect of the number of layers, fiber orientation angles, thickness and length to thickness ratios on the buckling load of the laminated composite plates under biaxial compression is investigated. The effectiveness of the optimization procedure in this study is compared with previous works.


2006 ◽  
Vol 324-325 ◽  
pp. 415-418
Author(s):  
Jin Woo Kim ◽  
Dong Gi Lee

While mold fiber reinforced composite material to problem of occasion that high temperature compression molding, flow length in mold is overlong or when flow meets with resistance in side of mold, fiber orientation happens and big change occurs in strength or quality. Thus, in compression molding that use fiber reinforced composite material, orientation state of fiber in moldings is the most basic element that quotes various properties of matter values. Therefore, to clear orientation state of fiber establishing measurement of fiber orientation angle distribution is very important while give correction of molding condition decision, mechanical quality of moldings and guide about material design. In the study, the fiber orientation distribution of simulation figure plotted by PC is measured using image processing in order to examine the accuracy of intersection counting method. The fiber orientation function measured by intersection counting method using image processing is compared with the calculated fiber orientation function. The results show that the measured value of fiber orientation function using intersection counting method is lower than the calculated value, because the number of intersection between the scanning line and the fiber with smaller fiber aspect ratio is counted less than with larger fiber aspect ratio.


2014 ◽  
Vol 887-888 ◽  
pp. 1246-1250 ◽  
Author(s):  
Zhi Kai Li ◽  
Dong Lu ◽  
Qiang Wang ◽  
Yong Bo Wu

This work is focused on the study of orthogonal cutting of carbon fiber reinforced composite. A model based on finite element was developed. Through defining ultimate stresses of fiber tension cracking and fiber compression bucking, ultimate stresses of matrix longitudinal tensile and shear damage. Cutting forces obtained from the FE simulation matches well with the experimental observations. Than analysis cracking and crushing phenomenon of matrix in different fiber orientation, the influence of fiber orientation on sub-surface damage was studied, it shows that the cracking of sub-surface damage value increased with the increase of fiber orientation angle.


2012 ◽  
Vol 19 (3) ◽  
pp. 323-330 ◽  
Author(s):  
Ahmet Erkliğ ◽  
Eyüp Yeter

AbstractCutouts such as circular, rectangular, square, elliptical, and triangular shapes are generally used in composite plates as access ports for mechanical and electrical systems, for damage inspection, to serve as doors and windows, and sometimes to reduce the overall weight of the structure. This paper addresses the effects of different cutouts on the buckling behavior of plates made of polymer matrix composites. To study the effects of cutouts on buckling, loaded edges are taken as fixed and unloaded edges are taken as free. Finite element analysis is also performed to predict the effects of different geometrical cutouts, orientations, and position of cutouts on the buckling behavior. The results show that fiber orientation angle and cutout sizes are the most important parameters on the buckling loads. For all types of cutouts the buckling loads decrease dramatically by increasing the fiber orientation angle. It is observed that minimum buckling load is reached when 45° fiber angle is used, and after this angle critical buckling load begins to increase. Also, it is concluded that while fiber orientation angle is 0°, elliptical cutout has the highest buckling load and while fiber orientation angle is 45°, circular cutout has the highest buckling load.


AIAA Journal ◽  
1993 ◽  
Vol 31 (5) ◽  
pp. 919-920 ◽  
Author(s):  
Shaowen Shao ◽  
Mitsunori Miki ◽  
Yoshisada Murotsu

Sign in / Sign up

Export Citation Format

Share Document