scholarly journals RFID and Drones: The Next Generation of Plant Inventory

2021 ◽  
Vol 3 (2) ◽  
pp. 168-181
Author(s):  
Jannette Quino ◽  
Joe Mari Maja ◽  
James Robbins ◽  
R. Thomas Fernandez ◽  
James S. Owen ◽  
...  

Collection of plant inventory (i.e., count, grade, plant size, yield) data is time-consuming, costly, and can be inaccurate. In response to increasing labor costs and shortages, there is an increased need for the adoption of more automated technologies by the nursery industry. Growers, small and large, are beginning to adopt technologies (e.g., plant spacing robots) that automate or augment certain operations, but greater strides must be taken to integrate next-generation technologies into these challenging unstructured agricultural environments. The main objective of this work is to demonstrate merging specific ground and aerial-based technologies (Radio Frequency Identification (RFID), and small Unmanned Aircraft System (sUAS)) into a holistic systems approach to address the specific need of moving toward automated on-demand plant inventory. This preliminary work focuses on evaluating different RFID tags with respect to their distance and orientation to the RFID reader. Fourteen different RFID tags, five distances (1.5 m, 3.0 m, 4.5 m, 6.0 m, and 7.6 m), and four tag orientations (the front of the tag (UP), back of the tag (DN), tag at sideways left (SL), and tag at sideways right (SR)) were assessed. Results showed that the tag upward orientation resulted in the highest scanning total for both the laboratory and field experiments. Two orientations (UP and SR) had significant effect on the scan total of tags. The distance between the reader and the tags at 1.5 m and 6.0 m did not significantly affect the scanning efficiency of the RFID system in horizontally fixed (p-value > 0.05) position regardless of tags. Different tag designs also produced different scan totals. Overall, since most of the tags were scanned at least once (except for Tag 6F), it is a very promising technology for use in nursery inventory data acquisition. This work will create a unique inventory system for agriculture where locations of plants or animals will not present a barrier as the system can easily be mounted on a drone. Although these experiments are focused on inventory in plant nurseries, results for this work has potential for inventory management in other agricultural sectors.

2021 ◽  
pp. 4-14
Author(s):  
Liliia O. Khodakivska ◽  
Yuliia M. Hrybovska ◽  
Zhanna A. Kononenko

The purpose of the research is to study the benefits and potential problems of using Radio Frequency Identification Devices (RFID) in the warehouse management and inventory supplychain management. Methodology. In the process of writing this article a few various types of the observation, timing, motional, inventory, and historical methods (describing present time limitations of the current inventory tracking system compare to the benefits and obstacles of the proposed new generation inventory management system) were used. To support our conclusion, we used data from the sampling research conducting on the premises of six distribution centers. Generalized results of this study helped us to create a comparison between deployment of the system with the use of just RFID tags, just barcodes, and a hybrid technology, were both types of the inventory markings were incorporated. Results. As it was predicted even before the research begins, the result of the study proved that use of the RFID technology significantly improved reliability of the inventory system by reducing number of out-ofstock (OOS) items, improved speed of the data collection and reduce amount and time of the manual work. It was also determined that RFID technology will help companies to better manage day-to-day inventory operations. The overall results suggested that use of the RFID technology will help companies to reduce fixed and variable costs associated with the daily operation of the inventory management system. However, it was also found that RFID system is not prone to the problems related to the breakage of the equipment and tags themselves. It is also worth to take into account a cost of RFID tags compares to the barcodes or two-dimensional barcodes. If a medium size company will decide to switch to the RFID technology completely, the cost of the switch might not overweight the saving the company will have. In this case a possible solution might be two-dimensional barcodes. Practical meaning. We hope that results of the study, our observations, and comments will help businesses to evaluate deployment of the RFID technology better, understand some unrecognized pro and cons of it and find possible ways to improve on the current systems by using advantages of multiple inventory solutions. Prospects for further research. Consideration should be given to a possible research of the security of the RFID technology, safety of the protocols it uses to collect and transmit data, and, finally, a possibility of the external intrusion and malicious data manipulations and the ways to prevent it.


2019 ◽  
Vol 2019 ◽  
pp. 1-19
Author(s):  
Jun Wang ◽  
Yasutake Takahashi

HF-band radio-frequency identification (RFID) is a robust identification system that is rarely influenced by objects in the robot activity area or by illumination conditions. An HF-band RFID system is capable of facilitating a reasonably accurate and robust self-localization of indoor mobile robots. An RFID-based self-localization system for an indoor mobile robot requires prior knowledge of the map which contains the ID information and positions of the RFID tags used in the environment. Generally, the map of RFID tags is manually built. To reduce labor costs, the simultaneous localization and mapping (SLAM) technique is designed to localize the mobile robot and build a map of the RFID tags simultaneously. In this study, multiple HF-band RFID readers are installed on the bottom of an omnidirectional mobile robot and RFID tags are spread on the floor. Because the tag detection process of the HF-band RFID system does not follow a standard Gaussian distribution, extended Kalman filter- (EKF-) based landmark updates are unsuitable. This paper proposes a novel SLAM method for the indoor mobile robot with a non-Gaussian detection model, by using the particle smoother for the landmark mapping and particle filter for the self-localization of the mobile robot. The proposed SLAM method is evaluated through experiments with the HF-band RFID system which has the non-Gaussian detection model. Furthermore, the proposed SLAM method is also evaluated by a range and bearing sensor which has the standard Gaussian detection model. In particular, the proposed method is compared against two other SLAM methods: FastSLAM and SLAM methods utilize particle filter for both the landmark updating and robot self-localization. The experimental results show the validity and superiority of the proposed SLAM method.


2016 ◽  
Vol 27 (3) ◽  
pp. 795-815 ◽  
Author(s):  
Sandeep Goyal ◽  
Bill C. Hardgrave ◽  
John A. Aloysius ◽  
Nicole DeHoratius

Purpose Perceived as an antidote to poor execution, interest in radio frequency identification (RFID)-enabled visibility has grown. The purpose of this paper is to examine whether and how RFID-enabled visibility with item-level tagging improves store execution. Design/methodology/approach The authors conducted three field-based experiments in collaboration with two Fortune 500 retailers. Findings RFID-enabled visibility resulted in a sizable decrease in inventory record inaccuracy and out-of-stocks for inventory held in both the backroom and on the sales floor. The decrease in inventory record inaccuracy and out-of-stocks was even greater among products stored primarily on the sales floor suggesting the benefits from increased visibility accrue to sales floor inventory management processes. In contrast, the authors found no significant improvement in inventory record inaccuracy and no substantive improvement in out-of-stocks among products stored primarily in the backroom suggesting that increased visibility does not improve backroom management processes. Practical implications The authors recommend retailers focus on sales floor inventory management when seeking to improve store execution through the adoption of RFID-enabled visibility. In the context, only partial evidence exists that backroom inventory management improves with RFID-enabled visibility. Originality/value Retailers seeking to invest in RFID technology must estimate potential performance improvements before making firm-specific cost-benefit analyses. They must also understand where and how these performance improvements will accrue. This research uniquely presents the results of a three field experiments that quantify the changes in retail execution associated with RFID adoption.


Author(s):  
Hector Gonzalez ◽  
Jiawei Han ◽  
Hong Cheng ◽  
Tianyi Wu

Massive Radio Frequency Identification (RFID) datasets are expected to become commonplace in supply-chain management systems. Warehousing and mining this data is an essential problem with great potential benefits for inventory management, object tracking, and product procurement processes. Since RFID tags can be used to identify each individual item, enormous amounts of location-tracking data are generated. Furthermore, RFID tags can record sensor information such as temperature or humidity. With such data, object movements can be modeled by movement graphs, where nodes correspond to locations, and edges record the history of item transitions between locations and sensor readings recorded during the transition. This chapter shows the benefits of the movement graph model in terms of compact representation, complete recording of spatio-temporal and item level information, and its role in facilitating multidimensional analysis. Compression power and efficiency in query processing are gained by organizing the model around the concept of gateway nodes, which serve as bridges connecting different regions of graph, and provide a natural partition of item trajectories. Multi-dimensional analysis is provided by a graph-based object movement data cube that is constructed by merging and collapsing nodes and edges according to an application-oriented topological structure.


Author(s):  
Jordan Frith

The phrase the Internet of things was originally coined in a 1999 presentation about attaching radio frequency identification (RFID) tags to individual objects. These tags would make the objects machine-readable, uniquely identifiable, and, most importantly, wirelessly communicative with infrastructure. This chapter evaluates RFID as a piece of mobile communicative infrastructure, and it examines two emerging forms: near-field communication (NFC) and Bluetooth low-energy beacons. The chapter shows how NFC and Bluetooth low-energy beacons may soon move some types of RFID to smartphones, in this way evolving the use of RFID in payment and transportation and enabling new practices of post-purchasing behaviors.


1990 ◽  
Vol 4 (2) ◽  
pp. 245-249 ◽  
Author(s):  
Brenda S. Smith ◽  
Don S. Murray ◽  
J. D. Green ◽  
Wan M. Wanyahaya ◽  
David L. Weeks

Barnyardgrass, large crabgrass, and Texas panicum were evaluated in field experiments over 3 yr to measure their duration of interference and density on grain sorghum yield. When grain yield data were converted to a percentage of the weed-free control, linear regression predicted a 3.6% yield loss for each week of weed interference regardless of year or grass species. Grain sorghum grown in a narrow (61-cm) row spacing was affected little by full-season interference; however, in wide (91-cm) rows, interference increased as grass density increased. Data from the wide-row spacing were described by linear regression following conversion of grain yield to percentages and weed density to log10. A separate nonlinear model also was derived which could predict the effect of weed density on grain sorghum yield.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Shunqiao Feng ◽  
Lin Han ◽  
Mei Yue ◽  
Dixiao Zhong ◽  
Jing Cao ◽  
...  

Abstract Background Langerhans cell histiocytosis (LCH) is a rare neoplastic disease that occurs in both children and adults, and BRAF V600E is detected in up to 64% of the patients. Several studies have discussed the associations between BRAF V600E mutation and clinicopathological manifestations, but no clear conclusions have been drawn regarding the clinical significance of the mutation in pediatric patients. Results We retrieved the clinical information for 148 pediatric LCH patients and investigated the BRAF V600E mutation using next-generation sequencing alone or with droplet digital PCR. The overall positive rate of BRAF V600E was 60/148 (41%). The type of sample (peripheral blood and formalin-fixed paraffin-embedded tissue) used for testing was significantly associated with the BRAF V600E mutation status (p-value = 0.000 and 0.000). The risk of recurrence declined in patients who received targeted therapy (p-value = 0.006; hazard ratio 0.164, 95%CI: 0.046 to 0.583). However, no correlation was found between the BRAF V600E status and gender, age, stage, specific organ affected, TP53 mutation status, masses close to the lesion or recurrence. Conclusions This is the largest pediatric LCH study conducted with a Chinese population to date. BRAF V600E in LCH may occur less in East Asian populations than in other ethnic groups, regardless of age. Biopsy tissue is a more sensitive sample for BRAF mutation screening because not all of circulating DNA is tumoral. Approaches with low limit of detection or high sensitivity are recommended for mutation screening to avoid type I and II errors.


2021 ◽  
Vol 13 (7) ◽  
pp. 3684
Author(s):  
Bibiana Bukova ◽  
Jiri Tengler ◽  
Eva Brumercikova

The paper focuses on the environmental burden created by Radio Frequency Identification (RFID) tags in the Slovak Republic (SR). In order to determine the burden there, a model example was created to calculate electronic waste produced by households in the SR by placing RFID tags into municipal waste. The paper presents a legislative regulatory approach towards the environmental impacts from using RFID tags in the SR, as well as an analysis of the environmental burden of using RFID tags throughout the world. The core of the paper is focused on the research conducted in order to calculate the environmental burden of a model household in the SR, where the number of used RFID tags per year was observed; then, the volume of e-waste produced by households of the Slovak Republic per year was determined. In the conclusion, we provide the results of the research presented and discuss including our own proposal for solving the problems connected with the environmental burden of RFID technology.


Agronomy ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1161
Author(s):  
Roland Gerhards ◽  
Fructueuse N. Ouidoh ◽  
André Adjogboto ◽  
Vodéa Armand Pascal Avohou ◽  
Berteulot Latus Sètondji Dossounon ◽  
...  

Although clear evidence for benefits in crop production is partly missing, several natural compounds and microorganisms have been introduced to the market as biostimulants. They are supposed to enhance nutrient efficiency and availability in the rhizosphere, reduce abiotic stress, and improve crop quality parameters. Biostimulants often derive from natural compounds, such as microorganisms, algae, and plant extracts. In this study, the commercial plant extract-based biostimulant ComCat® was tested in two field experiments with maize in the communities of Banikoara and Matéri in Northern Benin and six pot experiments (four with maize and two with winter barley) at the University of Hohenheim in Germany. Maize was grown under nutrient deficiency, drought, and weed competition, and winter barley was stressed by the herbicide Luximo (cinmethylin). ComCat® was applied at half, full, and double the recommended field rate (50, 100, and 200 g ha−1) on the stressed and unstressed control plants as leaf or seed treatment. The experiments were conducted in randomized complete block designs with four replications. The above-ground biomass and yield data of one experiment in Benin were collected. The biostimulant did not promote maize and winter barley biomass production of the unstressed plants. When exposed to stress, ComCat@ resulted only in one out of eight experiments in higher barley biomass compared to the stressed treatment without ComCat® application. There was a reduced phytotoxic effect of cinmethylin after seed treatment with ComCat®. Crop response to ComCat® was independent of the application rate. Basic and applied studies are needed to investigate the response of crops to biostimulants and their mechanisms of action in the plants before they should be used in practical farming.


Sign in / Sign up

Export Citation Format

Share Document