scholarly journals Molecular Cloning and Functional Identification of the Antimicrobial Peptide Gene Ctri9594 from the Venom of the Scorpion Chaerilus tricostatus

Antibiotics ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 896
Author(s):  
Dangui He ◽  
Zhijian Cao ◽  
Ruhong Zhang ◽  
Wenhua Li

Scorpion venom is a mixture of bioactive peptides, among which neurotoxins and antimicrobial peptides serve especially vital functions. Scorpion venom peptides in Buthidae species have been well described, but toxic peptides from non-Buthidae species have been under-investigated. Here, an antimicrobial peptide gene, Ctri9594, was cloned and functionally identified from the venom of the scorpion Chaerilus tricostatus. The precursor nucleotide sequence of Ctri9594 is 199 nt in length, including a 43 nt 5′ UTR, 115 nt 3′ UTR and 210 nt ORF. The ORF encodes 69 amino acid residues, containing a 21 aa signal peptide, 14 aa mature peptide, 3 aa C-terminal posttranslational processing signal and 31 aa propeptide. Multiple sequence alignment and evolutionary analyses show that Ctri9594 is an antimicrobial peptide in scorpion venom. The mature peptide of Ctri9594 was chemically synthesized with a purity greater than 95% and a molecular mass of 1484.4 Da. Minimum inhibitory concentrations (MICs) indicate that the synthesized mature peptide of Ctri9594 has inhibitory activity against Gram-positive bacteria (Bacillus thuringensis, Bacillus subtilis, Staphylococcus aureus and Micrococcus luteus) but not Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa) or a fungus (Candida albicans). The antimicrobial mechanism of Ctri9594 is inferred to be related to its amphiphilic α-helix structure.

Author(s):  
D. J. Kalita ◽  
S. Sarma ◽  
A. Baruah

Mammalian defensin is the one of the important antimicrobial peptides expressed by different epithelial lining of the living organisms. Present study was undertaken to characterize the lingual antimicrobial peptide (LAP) gene of Assam local cattle (Bos indicus ) for insilco designing of peptide for synthesis of novel antimicrobial agents. RNA was isolated from the tongue epithelial of Bos indicus and reverse transcribed with specific primer. The amplified PCR product was purified, cloned and sequenced. The size of the PCR product was 230 bp and cloned cDNA after sequencing revealed the open reading frame (ORF) of 195 bases. The total number of predicted amino acid in the peptide was 64. Aligned amino acid sequences of Bos indicus LAP showed six conserved cysteine residues at different positions. The mature peptide of local cattle LAP had six (6) arginine, three (3) lysine, three (3) proline and one (1) histidin residues. Support vector machine algorithms showed the antimicrobial potency of different segments of the mature peptide and out of them four different most potent peptides were designed. From the present study, it can be concluded that the mature domain of the Bos indicus lingual antimicrobial peptide (LAP) may be use as template for synthesis of new antimicrobial agents.


Antibiotics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 831
Author(s):  
Jonggwan Park ◽  
Jun Hee Oh ◽  
Hee Kyoung Kang ◽  
Moon-Chang Choi ◽  
Chang Ho Seo ◽  
...  

Antibiotic resistance is an important issue affecting humans and livestock. Antimicrobial peptides are promising alternatives to antibiotics. In this study, the antimicrobial peptide Css54, isolated from the venom of C. suffuses, was found to exhibit antimicrobial activity against bacteria such as Listeria monocytogenes, Streptococcus suis, Campylobacter jejuni, and Salmonella typhimurium that cause zoonotic diseases. Moreover, the cytotoxicity and hemolytic activity of Css54 was lower than that of melittin isolated from bee venom. Circular dichroism assays showed that Css54 has an α-helix structure in an environment mimicking that of bacterial cell membranes. We examined the effect of Css54 on bacterial membranes using N-phenyl-1-naphthylamine, 3,3′-dipropylthiadicarbbocyanine iodides, SYTOX green, and propidium iodide. Our findings suggest that the Css54 peptide kills bacteria by disrupting the bacterial membrane. Moreover, Css54 exhibited antibiofilm activity against L. monocytogenes. Thus, Css54 may be useful as an alternative to antibiotics in humans and animal husbandry.


2021 ◽  
Author(s):  
Stéphane Baeriswyl ◽  
Hippolyte Personne ◽  
Ivan Di Bonaventura ◽  
Thilo Köhler ◽  
Christian van Delden ◽  
...  

We report the first X-ray crystal structures of mixed chirality α-helices comprising only natural residues as the example of bicyclic and linear membrane disruptive amphiphilic antimicrobial peptides containing seven l- and four d-residues.


2021 ◽  
Author(s):  
Zie Wang ◽  
Jie Deng ◽  
Tingting Liang ◽  
Linlin Su ◽  
Lilei Zheng ◽  
...  

Abstract Background: WRKY transcription factors (TFs) play vital roles in plant growth and development, secondary metabolite synthesis, and response to biotic and abiotic stresses. In a previous transcriptome sequencing analysis of Lilium regale Wilson, we identified multiple WRKY TFs that respond to exogenous methyl jasmonate treatment and lily Fusarium wilt (Fusarium oxysporum).Results: In the present study, the WRKY TF LrWRKY3 was further analyzed to reveal its function in defense response to F. oxysporum. The LrWRKY3 protein was localized in the plant cell nucleus, and LrWRKY3 transgenic tobacco lines showed higher resistance to F. oxysporum compared with wild-type (WT) tobacco. In addition, some genes related to jasmonic acid (JA) biosynthesis, salicylic acid (SA) signal transduction, and disease resistance had higher transcriptional levels in the LrWRKY3 transgenic tobacco lines than in the WT. On the contrary, L. regale scales transiently expressing LrWRKY3 RNA interference fragments showed higher sensitivity to F. oxysporum infection. Moreover, a F. oxysporum-induced defensin gene, Def1, was isolated from L. regale, and the recombinant protein LrDef1 isolated and purified from Escherichia coli possessed antifungal activity to several phytopathogens, including F. oxysporum. Furthermore, co-expression of LrWRKY3 and the LrDef1 promoter in tobacco evidently up-regulated the expression activity of the LrDef1 promoter.Conclusions: These results clearly indicate that LrWRKY3 is an important positive regulator in response to F. oxysporum infection, and one of its targets is the antimicrobial peptide gene LrDef1.


2004 ◽  
Vol 48 (10) ◽  
pp. 3662-3669 ◽  
Author(s):  
O. Etienne ◽  
C. Picart ◽  
C. Taddei ◽  
Y. Haikel ◽  
J. L. Dimarcq ◽  
...  

ABSTRACT Infection of implanted materials by bacteria constitutes one of the most serious complications following prosthetic surgery. In the present study, we developed a new strategy based on the insertion of an antimicrobial peptide (defensin from Anopheles gambiae mosquitoes) into polyelectrolyte multilayer films built by the alternate deposition of polyanions and polycations. Quartz crystal microbalance and streaming potential measurements were used to follow step by step the construction of the multilayer films and embedding of the defensin within the films. Antimicrobial assays were performed with two strains: Micrococcus luteus (a gram-positive bacterium) and Escherichia coli D22 (a gram-negative bacterium). The inhibition of E. coli D22 growth at the surface of defensin-functionalized films was found to be 98% when 10 antimicrobial peptide layers were inserted in the film architecture. Noticeably, the biofunctionalization could be achieved only when positively charged poly(l-lysine) was the outermost layer of the film. On the basis of the results of bacterial adhesion experiments observed by confocal or electron microscopy, these observations could result from the close interaction of the bacteria with the positively charged ends of the films, which allows defensin to interact with the bacterial membrane structure. These results open new possibilities for the use of such easily built and functionalized architectures onto any type of implantable biomaterial. The modified surfaces are active against microbial infection and represent a novel means of local host protection.


2003 ◽  
Vol 23 (22) ◽  
pp. 8272-8281 ◽  
Author(s):  
Hanna Uvell ◽  
Ylva Engström

ABSTRACT Innate immune reactions are crucial processes of metazoans to protect the organism against overgrowth of faster replicating microorganisms. Drosophila melanogaster is a precious model for genetic and molecular studies of the innate immune system. In response to infection, the concerted action of a battery of antimicrobial peptides ensures efficient killing of the microbes. The induced gene expression relies on translocation of the Drosophila Rel transcription factors Relish, Dif, and Dorsal to the nucleus where they bind to κB-like motifs in the promoters of the inducible genes. We have identified another putative promoter element, called region 1 (R1), in a number of antimicrobial peptide genes. Site-directed mutagenesis of the R1 site diminished Cecropin A1 (CecA1) expression in transgenic Drosophila larvae and flies. Infection of flies induced a nuclear R1-binding activity that was unrelated to the κB-binding activity in the same extracts. Although the R1 motif was required for Rel protein-mediated CecA1 expression in cotransfection experiments, our data argue against it being a direct target for the Drosophila Rel proteins. We propose that the R1 and κB motifs are targets for distinct regulatory complexes that act in concert to promote high levels of antimicrobial peptide gene expression in response to infection.


Genomics ◽  
2020 ◽  
Vol 112 (2) ◽  
pp. 1821-1828
Author(s):  
Kun Hao ◽  
Hidayat Ullah ◽  
Aftab Raza Jarwar ◽  
Xiangqun Nong ◽  
Xiongbing Tu ◽  
...  

2005 ◽  
Vol 56 (416) ◽  
pp. 1685-1695 ◽  
Author(s):  
Dmytro P. Yevtushenko ◽  
Rafael Romero ◽  
Benjamin S. Forward ◽  
Robert E. Hancock ◽  
William W. Kay ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document