scholarly journals A Two-Round Optimization Design Method for Aerostatic Spindles Considering the Fluid–Structure Interaction Effect

2021 ◽  
Vol 11 (7) ◽  
pp. 3017
Author(s):  
Qiang Gao ◽  
Siyu Gao ◽  
Lihua Lu ◽  
Min Zhu ◽  
Feihu Zhang

The fluid–structure interaction (FSI) effect has a significant impact on the static and dynamic performance of aerostatic spindles, which should be fully considered when developing a new product. To enhance the overall performance of aerostatic spindles, a two-round optimization design method for aerostatic spindles considering the FSI effect is proposed in this article. An aerostatic spindle is optimized to elaborate the design procedure of the proposed method. In the first-round design, the geometrical parameters of the aerostatic bearing were optimized to improve its stiffness. Then, the key structural dimension of the aerostatic spindle is optimized in the second-round design to improve the natural frequency of the spindle. Finally, optimal design parameters are acquired and experimentally verified. This research guides the optimal design of aerostatic spindles considering the FSI effect.

Author(s):  
Hyun-Su Kang ◽  
Yoo-June Song ◽  
Youn-Jea Kim

In this study, a method for optimal design of impeller for centrifugal compressor under the influence of flow-induced vibration (FIV) using fluid-structure interaction (FSI) and response surface method (RSM) was studied. Numerical simulation was conducted using ANSYS with various configurations of impeller geometry. Each of the design parameters was divided into 3 levels. Total 15 design points were planned by central composite design (CCD) method, which is one of the design of experiment (DOE) techniques. Response surfaces generated based on the DOE results were used to find the optimal shape of impeller for high aerodynamic performance. The whole process of optimization was conducted using ANSYS Design Xplorer (DX). Through the optimization, structural stability and aerodynamic performance of centrifugal compressor were improved.


Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 149
Author(s):  
Andrea Chierici ◽  
Leonardo Chirco ◽  
Sandro Manservisi

Fluid-structure interaction (FSI) problems are of great interest, due to their applicability in science and engineering. However, the coupling between large fluid domains and small moving solid walls presents numerous numerical difficulties and, in some configurations, where the thickness of the solid wall can be neglected, one can consider membrane models, which are derived from the Koiter shell equations with a reduction of the computational cost of the algorithm. With this assumption, the FSI simulation is reduced to the fluid equations on a moving mesh together with a Robin boundary condition that is imposed on the moving solid surface. In this manuscript, we are interested in the study of inverse FSI problems that aim to achieve an objective by changing some design parameters, such as forces, boundary conditions, or geometrical domain shapes. We study the inverse FSI membrane model by using an optimal control approach that is based on Lagrange multipliers and adjoint variables. In particular, we propose a pressure boundary optimal control with the purpose to control the solid deformation by changing the pressure on a fluid boundary. We report the results of some numerical tests for two-dimensional domains to demonstrate the feasibility and robustness of our method.


2021 ◽  
Vol 37 ◽  
pp. 216-229
Author(s):  
Yung Jeh Chu ◽  
Poo Balan Ganesan ◽  
Mohamad Azlin Ali

Abstract The dragonfly wings provide insights for designing an efficient biomimetic micro air vehicle (BMAV). In this regard, this study focuses on investigating the effect of the pterostigma weight loading and its spatial location on the forewings of dragonfly by using the fluid–structure interaction simulation. This study also investigates the effect of change in the wing elasticity and density on the wing performance. The forewing, which mimics the real dragonfly wing, is flat with a 47.5 mm span and a 0.4 mm thickness. The wing was set to cruise at 3 m/s with a constant flapping motion at a frequency of 25 Hz. This study shows that a small increase of pterostigma loading (11% of wing weight) at the tip of the wing significantly improves the lift to drag ratio, CL/CD, which has 129.16% increment in comparison with no loading. The lift to drag ratio depends on the pterostigma location, pterostigma loading, elastic modulus and density. The results of this study can be used as a reference in future BMAV wing optimization design.


Micromachines ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 100
Author(s):  
Haonan Ji ◽  
Bin Zou ◽  
Yongsheng Ma ◽  
Carlos F. Lange ◽  
Jikai Liu ◽  
...  

Based on expert system theory and fluid–structure interaction (FSI), this paper suggests an intelligent design optimization system to derive the optimal shape of both the fluid and solid domain of flow channels. A parametric modeling scheme of flow channels is developed by design for additive manufacturing (DfAM). By changing design parameters, a series of flow channel models can be obtained. According to the design characteristics, the system can intelligently allocate suitable computational models to compute the flow field of a specific model. The pressure-based normal stress is abstracted from the results and transmitted to the solid region by the fluid–structure (FS) interface to analyze the strength of the structure. The design space is obtained by investigating the simulation results with the metamodeling method, which is further applied for pursuing design objectives under constraints. Finally, the improved design is derived by gradient-based optimization. This system can improve the accuracy of the FSI simulation and the efficiency of the optimization process. The design optimization of a flow channel in a simplified hydraulic manifold is applied as the case study to validate the feasibility of the proposed system.


2014 ◽  
Vol 977 ◽  
pp. 418-422
Author(s):  
Rui Li ◽  
Chang Hong Tang

the origins and characteristics of linear and nonlinear aeroelasticity are analyzed.And the deforming mesh , fluid-structure coupling schemes, the design method of aerodynamic module and structure module interface are also analyzed. their advantages and disadvantages are Pointed out. Finally, several recommendations are given for the development orientation of aeroelasticity in the future.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Yu Zhang ◽  
Sanbao Hu ◽  
Yunqing Zhang ◽  
Liping Chen

This paper presents the optimization of vibrations of centrifugal pump considering fluid-structure interaction (FSI). A set of centrifugal pumps with various blade shapes were studied using FSI method, in order to investigate the transient vibration performance. The Kriging model, based on the results of the FSI simulations, was established to approximate the relationship between the geometrical parameters of pump impeller and the root mean square (RMS) values of the displacement response at the pump bearing block. Hence, multi-island genetic algorithm (MIGA) has been implemented to minimize the RMS value of the impeller displacement. A prototype of centrifugal pump has been manufactured and an experimental validation of the optimization results has been carried out. The comparison among results of Kriging surrogate model, FSI simulation, and experimental test showed a good consistency of the three approaches. Finally, the transient mechanical behavior of pump impeller has been investigated using FSI method based on the optimized geometry parameters of pump impeller.


Author(s):  
Lihua Lu ◽  
Qiang Gao ◽  
Wanqun Chen ◽  
Liang Liu ◽  
Guanglin Wang

The performances of aerostatic spindle are highly affected by the fluid–structure interaction between air film and solid structure. This paper proposes a comprehensive two-way fluid–structure interaction model to analyze the fluid–structure interaction effect of an aerostatic spindle. The structure deformation induced by air film pressure is considered to predict the actual performance of aerostatic spindle. Furthermore, to provide theoretical basis for the structure parameters design, the influence of structural dimensions (such as the thickness of thrust plate) on its performance is investigated, and optimal structural parameters are acquired. The stiffness of aerostatic spindle with varying thrust plate thickness is tested to verify the reliability of simulation results.


2018 ◽  
Vol 7 (4.19) ◽  
pp. 900
Author(s):  
Walaa A. Sabbar ◽  
Muneer A. Ismael ◽  
Mujtaba Almudhaffar

The object of this paper is the mixed convection and fluid flow in a cavity consisting of a flexible wall linked to a horizontal channel. A heat source segment fixed on the bottom wall while all other solid walls are thermally insulated heats up the cavity. Fluid structure interaction (FSI)is taken into account and the arbitrary Lagrangian–Eulerian (ALE) technique with FEM are adopted together to solve the discretized formulations. Impacts of various parameters on the heat exchange were investigated, these are: the channel height to cavity height ratio, represented by (H/D) = 0.5–1.1;heat source length, LH= 0.5 – 1.5;heat source location, and Ri = 0.1- 100. The results show that (H/D) has marginal impact on the Nusselt number, where only 5% enhancement is associated at H/D = 0.7 for Ri = 100. The lower the length of the heat source is the maximal the Nusselt number. A maximum enhancement in the Nusselt number of 156% is obtained when LH is decreased from 1.5 to 0.5.  


Sign in / Sign up

Export Citation Format

Share Document