scholarly journals The Influence of Soldering Profile on the Thermal Parameters of Insulated Gate Bipolar Transistors (IGBTs)

2021 ◽  
Vol 11 (12) ◽  
pp. 5583
Author(s):  
Adrian Pietruszka ◽  
Paweł Górecki ◽  
Sebastian Wroński ◽  
Balázs Illés ◽  
Agata Skwarek

The effect of solder joint fabrication on the thermal properties of IGBTs soldered onto glass-epoxy substrate (FR4) was investigated. Glass-epoxy substrates with a thickness of 1.50 mm, covered with a 35 μm thick Cu layer, were used. A surface finish was prepared from a hot air leveling (HAL) Sn99Cu0.7Ag0.3 layer with a thickness of 1 ÷ 40 μm. IGBT transistors NGB8207BN were soldered with SACX0307 (Sn99Ag0.3Cu0.7) paste. The samples were soldered in different soldering ovens and at different temperature profiles. The thermal impedance Zth(t) and thermal resistance Rthof the samples were measured. Microstructural and voids analyses were performed. It was found that the differences for different samples reached 15% and 20% for Zth(t) and Rth, respectively. Although the ratio of the gas voids in the solder joints varied between 3% and 30%, no correlation between the void ratios and Rth increase was found. In the case of the different soldering technologies, the microstructure of the solder joint showed significant differences in the thickness of the intermetallic compounds (IMC) layer; these differences correlated well with the time above liquidus during the soldering process. The thermal parameters of IGBTs could be changed due to the increased thermal conductivity of the IMC layer as compared to the thermal conductivity of the solder bulk. Our research highlighted the importance of the soldering technology used and the thermal profile in the case of the assembly of IGBT components.

Author(s):  
Thomas B. Gradinger ◽  
Uwe Drofenik

The prediction of temperatures in power semiconductor modules, such as insulated-gate bipolar transistors (IGBTs) is critical to ensure adequate lifetime modeling of the devices. A temperature of particular interest is that of the semiconductor junction, which is used to assess the lift-off of wire bonds. For many applications featuring dynamic loads, the junction temperature needs to be simulated for so-called mission profiles of significant duration. To limit the computational expense, the simulations are based on thermal impedances from junction to ambient, which may be obtained from numerical 3-d simulations. Even these 3-d simulations can be computationally expensive. In power-electronic systems, often, large heat sinks are used with a multitude of mounted IGBT modules, interacting thermally. In such cases, the detailed 3-d models become large and the transient simulations are not feasible. In the present work, a method is proposed that allows us to significantly reduce the 3-d model size. To this end, the ideas of compact or boundary-condition-independent models are used. The presented method has the advantage that, unlike in model-order reduction, the system matrices of the 3-d model are not needed. This makes the method applicable to commercial simulation software like ANSYS Icepak™, that does not give access to the system matrices. The method is implemented via MATLAB™ scripts that automatically generate 3-d ANSYS Icepak™ models of IGBT modules on a heat sink. An example case of two IGBT modules mounted on an air-cooled heat sink is presented, and the method is shown to yield good accuracy (thermal-impedance errors below 8% and thermal-resistance errors close to zero), while reducing the model's mesh size by the factor of 14. Further error reduction is expected to be possible by adapting the model parameters. This can be subject to future work.


Sensors ◽  
2019 ◽  
Vol 19 (19) ◽  
pp. 4176 ◽  
Author(s):  
Chaoqun Jiao ◽  
Juan Zhang ◽  
Zhibin Zhao ◽  
Zuoming Zhang ◽  
Yuanliang Fan

With the development of China’s electric power, power electronics devices such as insulated-gate bipolar transistors (IGBTs) have been widely used in the field of high voltages and large currents. However, the currents in these power electronic devices are transient. For example, the uneven currents and internal chip currents overshoot, which may occur when turning on and off, and could have a great impact on the device. In order to study the reliability of these power electronics devices, this paper proposes a miniature printed circuit board (PCB) Rogowski coil that measures the current of these power electronics devices without changing their internal structures, which provides a reference for the subsequent reliability of their designs.


Energies ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4545
Author(s):  
Yongseung Oh ◽  
Jaeeul Yeon ◽  
Jayoon Kang ◽  
Ilya Galkin ◽  
Wonsoek Oh ◽  
...  

Single-ended (SE) resonant inverters are widely used as power converters for high-pressure rice cooker induction, with 1200 V insulated-gate bipolar transistors (IGBTs) being used as switching devices for kW-class products. When voltage fluctuations occur at the input stage of an SE resonant inverter, the resonant voltage applied to the IGBT can be directly affected, potentially exceeding the breakdown voltage of the IGBT, resulting in its failure. Consequently, the resonant voltage should be limited to below a safety threshold—hardware resonant voltage limiting methods are generally used to do so. This paper proposes a sensorless resonant voltage control method that limits the increase in the resonant voltage caused by overvoltage or supply voltage fluctuations. By calculating and predicting the resonance voltage through the analysis of the resonance circuit, the resonance voltage is controlled not to exceed the breakdown voltage of the IGBT. The experimental results of a 1.35 kW SE resonant inverter for a high-pressure induction heating rice cooker were used to verify the validity of the proposed sensorless resonant voltage limiting method.


2001 ◽  
Author(s):  
Giho Cha ◽  
Youngchul Kim ◽  
Hyungwoo Jang ◽  
Hyunsoon Kang ◽  
Changsub Song

Author(s):  
Kanji Takagi ◽  
Masaki Wakabayashi ◽  
Junichi Inoue ◽  
Qiang Yu ◽  
Takahiro Akutsu

This paper proposes the high reliable design method for lead-free solder joint on metal substrate on chip component. First, the crack propagation analysis method for estimating rupture life of solder joint was constructed. And then, the effect of material properties of insulating layer on metal substrate and solder joint shape for rupture life of solder joint was evaluated using crack propagation analysis. As the result, the relation between young’s modulus of insulating layer and rupture life was indicated quantitatively. Also, the relation of filet length for rupture life of solder joint was evaluated. Secondary, evaluation method of heat dissipation for metal substrate was proposed. Because thermal conductivity of insulating layer affects temperature rise of heating device. And, the relation between thermal conductivity of insulating layer and temperature rise of heating device was indicated.


Sign in / Sign up

Export Citation Format

Share Document