scholarly journals Power Stability Analysis and Evaluation Criteria of Dual-Infeed HVDC with LCC-HVDC and VSC-HVDC

2021 ◽  
Vol 11 (13) ◽  
pp. 5847
Author(s):  
Xinglong Wu ◽  
Zheng Xu ◽  
Zheren Zhang

This paper analyzes the power stability of the hybrid dual-infeed high-voltage direct-current (HVDC) system containing a line commutated converter-based HVDC (LCC-HVDC) and a voltage source converter-based HVDC (VSC-HVDC). First, the concept and the calculation method of power stability for the hybrid dual-infeed HVDC system are introduced. Second, the influence of VSC-HVDC on the power stability of the system is investigated. Third, the relationship between the power stability and the effective short circuit ratio (ESCR) is discussed under different system parameters. Then, the value range of the critical effective short circuit ratio is determined. Finally, the evaluation criteria of power stability are proposed. The results show that the evaluation criteria of the single-infeed LCC-HVDC system can still be used, if the VSC-HVDC is in constant AC voltage control mode; if the VSC-HVDC is in constant reactive power control mode, the hybrid dual-infeed HVDC system cannot operate stably when the ESCR is less than 2.0 and can operate stably with high power stability margin when the ESCR is greater than 3.0. The ESCR index can still be used to measure the power stability of the hybrid dual-infeed HVDC system.

Energies ◽  
2020 ◽  
Vol 13 (9) ◽  
pp. 2260
Author(s):  
Fan Cheng ◽  
Lijun Xie ◽  
Zhibing Wang

This paper investigated the characteristics of a novel type of hybrid high voltage direct current (HVdc) converter, which is composed by line commutated converter series with voltage source converter. The system and valve level control strategies are introduced, which can provide ac system voltage support. A novel filter design scheme composed by resonant filers for hybrid HVdc are also proposed, which can decrease the capacity of reactive power compensation equipment without deteriorate harmonic characteristics. The ac voltage of HVdc fluctuation level caused by transmitted power variation will be effectively reduced, with the coordination between filter design scheme and converter control. In addition, the influence of ac grid strength is also analyzed by equivalent source internal impedance represented by short circuit ratio (SCR). Finally, the +800 kV/1600 MW hybrid HVdc system connecting two ac grids under different SCR cases are studied, and the PSCAD/EMTDC simulation results have validated the effectiveness for proposed strategy.


2013 ◽  
Vol 3 (2) ◽  
Author(s):  
Guo-Jie Li ◽  
Si-Ye Ruan ◽  
Tek Lie

AbstractA multi-terminal voltage-source-converter (VSC) based high voltage direct current (HVDC) system is concerned for its flexibility and reliability. In this study, a control strategy for multiple VSCs is proposed to auto-share the real power variation without changing control mode, which is based on “dc voltage droop” power regulation functions. With the proposed power regulation design, the multiple VSCs automatically share the real power change and the VSC-HVDC system is stable even under loss of any one converter while there is no overloading for any individual converter. Simulation results show that it is effective to balance real power for power disturbance and thus improves operation reliability for the multi-terminal VSC-HVDC system by the proposed control strategy.


2019 ◽  
Vol 11 (5) ◽  
pp. 1232 ◽  
Author(s):  
Md Alam ◽  
Mohammad Abido ◽  
Alaa Hussein ◽  
Ibrahim El-Amin

This paper proposes a non-superconducting bridge-type fault current limiter (BFCL) as a potential solution to the fault problems of doubly fed induction generator (DFIG) integrated voltage source converter high-voltage DC (VSC-HVDC) transmission systems. As the VSC-HVDC and DFIG systems are vulnerable to AC/DC faults, a BFCL controller is developed to insert sizeable impedance during the inception of system disturbances. In the proposed control scheme, constant capacitor voltage is maintained by the stator VSC (SVSC) controller, while current extraction or injection is achieved by rotor VSC (RVSC) controller. Current control mode-based active and reactive power controllers for an HVDC system are developed. Balanced and different unbalanced faults are applied in the system to show the effectiveness of the proposed BFCL solution. A DFIG wind-based VSC-HVDC system, BFCL, and their controllers are implemented in a real time digital simulator (RTDS). The performance of the proposed BFCL control strategy in DFIG-based VSC-HVDC system is compared with a series dynamic braking resistor (SDBR). Comparative RTDS implementation results show that the proposed BFCL control strategy is very efficient in improving system fault ride through (FRT) capability and outperforms SDBR in all cases considered.


Author(s):  
Prabodha Kumar Rath ◽  
Kanhu Charan Bhuyan

<span lang="EN-US">This paper proposes a model of a VSC (voltage source converter) based Back to Back HVDC system and its control technique under fault condition. From the mathematical model of the system relationship between the controlling and the controlled variables is determined to control the system parameters. An appropriate vector control technique is used to control active and reactive power and to maintain DC link voltage. The proposed controlling unit consists of outer control loop and inner control loop which effectively damped out the system oscillation and maintains the system stability. The validity of the model and the feasibility of the control method have been proved by the simulation results. In this paper the system performance is studied under fault condition is studied.</span>


2013 ◽  
Vol 387 ◽  
pp. 254-257
Author(s):  
Qun Feng Zhu ◽  
Lei Huang ◽  
Deng Xiang Yang ◽  
Guang Yao Zhu

A type of direct current controlled static reactive power compensator (DSTATCOM) used for improvement of voltage quality in low-medium distribution network is introduced. The main circuit of DSTATCOM consists of VSI-SPWM voltage source inverter. The extraction of reference current and the tracking control of compensator current are realized in synchronous reference frame. The function of DSTATCOM to mitigate voltage sag and flicker is presented in this paper and the control mode of DSTATCOM is discussed in detail. The function of DSTATCOM to mitigate voltage sag and flicker under different control mode is simulated with MATLAB. The simulation results shows that the current control mode is suitable for mitigating voltage flicker and the voltage control mode is suitable for mitigating voltage sag.


2013 ◽  
Vol 860-863 ◽  
pp. 2062-2067
Author(s):  
Ben Feng Gao ◽  
Jin Liu ◽  
Shu Qiang Zhao ◽  
Kun Xu

The study on the HVDC based on voltage-source converter focuses mainly on the control strategy while less on the impact of electrical damping on the adjacent units by VSC-HVDC. The mechanism of VSC-HVDC on inhibiting sub-synchronous oscillation is analyzed theoretically in the respect of its operation principle. Then the complex torque coefficient method realized by time domain simulation-the test signal method, is adopted to investigate the impact of the unit interaction factor, control mode, active power level and reactive power level on the electrical damping on the adjacent units.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Jie Huang ◽  
Dezhi Xu ◽  
Wenxu Yan ◽  
Le Ge ◽  
Xiaodong Yuan

This paper proposed a command-filtered backstepping controller to improve the dynamic performance of back-to-back voltage-source-converter high voltage direct current (BTB VSC-HVDC). First, the principle and model of BTB VSC-HVDC in abc and d-q frame are described. Then, backstepping method is applied to design a controller to maintain the voltage balance and realize coordinated control of active and reactive power. Meanwhile, command filter is introduced to deal with the problem of input saturation and explosion of complexity in conventional backstepping, and a filter compensation signal is designed to diminish the adverse effects caused by the command filter. Next, the stability and convergence of the whole system are proved via the Lyapunov theorem of asymptotic stability. Finally, simulation results are given to demonstrate that proposed controller has a better dynamic performance and stronger robustness compared to the traditional PID algorithm, which also proves the effectiveness and possibility of the designed controller.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1677 ◽  
Author(s):  
Ying Wang ◽  
Youbin Zhou ◽  
Dahu Li ◽  
Dejun Shao ◽  
Kan Cao ◽  
...  

Voltage source converter-based high-voltage direct current (VSC-HVDC) has the advantage of fast and independent controllability on active and reactive power. This paper focuses on effects of commonly proposed reactive power control modes, constant reactive power control and AC voltage margin control. Based on the mathematical model of single machine infinity equivalent system with embedded VSC-HVDC, the influence of VSC-HVDC with different reactive power control strategies on transient stability and dynamic stability of the AC system is studied. Then case studies were conducted with a realistic model of grid. The dynamic responses of AC/DC systems for different VSC-HVDC reactive power control modes were compared in detail. It is shown that compared to constant reactive power control, AC voltage margin control can provide voltage support to enhance the transient angle stability of an AC system. However, the fluctuant reactive power injected into a weak AC system may adversely affect power system oscillation damping for VSC-HVDC with AC voltage margin control, if the parameters of the controller have not been optimized to suppress the low-frequency oscillation. The results of this paper can provide certain reference for the decision of an appropriate VSC-HVDC reactive power control mode in practice.


2013 ◽  
Vol 648 ◽  
pp. 361-364
Author(s):  
Lei Huang ◽  
Deng Xiang Yang ◽  
Jie Tang ◽  
Qun Feng Zhu

This paper presents a direct current-controlled static reactive power compensator (DSTATCOM) for voltage quality improvement of low-medium distribution network. The main circuit of the DSTATCOM uses VSI-SPWM structure-based voltage source inverter (VSI), and both operation of reference current and control of compensation current are realized in synchronous reference frames. The function of DSTATCOM to mitigate voltage sag and flicker, two common voltage quality problems, is discussed in detail in this paper. According to the forming way of reactive reference current, operation mode of DSTACOM are classified into current control mode and voltage control mode. And under the two operation modes the function of DSTATCOM to mitigate voltage sag and flicker under different control modes is simulated with MATLAB. The simulation results show that the current control mode is suitable for mitigating voltage flicker, while the voltage control mode for voltage sag.


Sign in / Sign up

Export Citation Format

Share Document