scholarly journals Integration of DE Algorithm with PDC-APF for Enhancement of Contour Path Planning of a Universal Robot

2021 ◽  
Vol 11 (14) ◽  
pp. 6532
Author(s):  
Issraa Jwad Kazim ◽  
Yuegang Tan ◽  
Layth Qaseer

In the robotic engineering field, the main target, especially in industry, manufacturing, and surgical operations, is reaching the optimal performance of manipulators. The purpose of this paper is to quantify the contour tracking performance of collaborative universal manipulator robot (UR5) by setting the gain of position domain controller. In order to improve and enhance the track of manipulator in experimental applications we utilize differential evolution (DE) optimization, using MATLAB toolbox with an applied robot operating system (ROS). The adopted current approach does not only optimize the gain of position domain controller but also prevent collisions by detecting a “border crossing” without turning off the manipulator and allowing the automation agent to be on the scene, coexisting in harmonic mode and avoiding collisions. This requires the implementation of an algorithm that detects an obstacle to avoid anticipated collisions. For this purpose, the adopted algorithm uses the DE algorithm to modify the artificial potential field (APF). The results of this paper present that on one hand, meta-heuristic optimization algorithm features give the best performance indices for linear and non-linear contours, and on the other hand, DE algorithm features give good modification to APF to generate collision free contour path planning.

2021 ◽  
Vol 18 (3) ◽  
pp. 172988142110264
Author(s):  
Jiqing Chen ◽  
Chenzhi Tan ◽  
Rongxian Mo ◽  
Hongdu Zhang ◽  
Ganwei Cai ◽  
...  

Among the shortcomings of the A* algorithm, for example, there are many search nodes in path planning, and the calculation time is long. This article proposes a three-neighbor search A* algorithm combined with artificial potential fields to optimize the path planning problem of mobile robots. The algorithm integrates and improves the partial artificial potential field and the A* algorithm to address irregular obstacles in the forward direction. The artificial potential field guides the mobile robot to move forward quickly. The A* algorithm of the three-neighbor search method performs accurate obstacle avoidance. The current pose vector of the mobile robot is constructed during obstacle avoidance, the search range is narrowed to less than three neighbors, and repeated searches are avoided. In the matrix laboratory environment, grid maps with different obstacle ratios are compared with the A* algorithm. The experimental results show that the proposed improved algorithm avoids concave obstacle traps and shortens the path length, thus reducing the search time and the number of search nodes. The average path length is shortened by 5.58%, the path search time is shortened by 77.05%, and the number of path nodes is reduced by 88.85%. The experimental results fully show that the improved A* algorithm is effective and feasible and can provide optimal results.


2021 ◽  
Vol 9 (7) ◽  
pp. 761
Author(s):  
Liang Zhang ◽  
Junmin Mou ◽  
Pengfei Chen ◽  
Mengxia Li

In this research, a hybrid approach for path planning of autonomous ships that generates both global and local paths, respectively, is proposed. The global path is obtained via an improved artificial potential field (APF) method, which makes up for the shortcoming that the typical APF method easily falls into a local minimum. A modified velocity obstacle (VO) method that incorporates the closest point of approach (CPA) model and the International Regulations for Preventing Collisions at Sea (COLREGS), based on the typical VO method, can be used to get the local path. The contribution of this research is two-fold: (1) improvement of the typical APF and VO methods, making up for previous shortcomings, and integrated COLREGS rules and good seamanship, making the paths obtained more in line with navigation practice; (2) the research included global and local path planning, considering both the safety and maneuverability of the ship in the process of avoiding collision, and studied the whole process of avoiding collision in a relatively entirely way. A case study was then conducted to test the proposed approach in different situations. The results indicate that the proposed approach can find both global and local paths to avoid the target ship.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 135513-135523
Author(s):  
Qingfeng Yao ◽  
Zeyu Zheng ◽  
Liang Qi ◽  
Haitao Yuan ◽  
Xiwang Guo ◽  
...  

2021 ◽  
Vol 11 (5) ◽  
pp. 2114
Author(s):  
Wenlin Yang ◽  
Peng Wu ◽  
Xiaoqi Zhou ◽  
Haoliang Lv ◽  
Xiaokai Liu ◽  
...  

Aiming at the problems of “local minimum” and “unreachable target” existing in the traditional artificial potential field method in path planning, an improved artificial potential field method was proposed after analyzing the fundamental causes of the above problems. The method solved the problem of local minimum by modifying the direction and influence range of the gravitational field, increasing the virtual target and evaluation function, and the problem of unreachable targets is solved by increasing gravity. In view of the change of motion state of robot fish in amphibious environments, the improved artificial potential field method was fused with a dynamic window algorithm, and a dynamic window evaluation function of the optimal path was designed on the basis of establishing the dynamic equations of land and underwater. Then, the simulation experiment was designed under the environment of Matlab2019a. Firstly, the improved and traditional artificial potential field methods were compared. The results showed that the improved artificial potential field method could solve the above two problems well, shorten the operation time and path length, and have high efficiency. Secondly, the influence of different motion modes on path planning is verified, and the result also reflects that the amphibious robot can avoid obstacles flexibly and reach the target point accurately according to its own motion ability. This paper provides a new way of path planning for the amphibious robot.


2021 ◽  
Author(s):  
Xiaowei Li ◽  
Haisheng Song ◽  
Zhijiu Han ◽  
Dan Zhang ◽  
Yan Peng

Sign in / Sign up

Export Citation Format

Share Document