velocity obstacle
Recently Published Documents


TOTAL DOCUMENTS

91
(FIVE YEARS 50)

H-INDEX

10
(FIVE YEARS 4)

Author(s):  
Shunchao Wang ◽  
Zhibin Li ◽  
Bingtong Wang ◽  
Jingfeng Ma ◽  
Jingcai Yu

This study proposes a novel collision avoidance and motion planning framework for connected and automated vehicles based on an improved velocity obstacle (VO) method. The controller framework consists of two parts, that is, collision avoidance method and motion planning algorithm. The VO algorithm is introduced to deduce the velocity conditions of a vehicle collision. A collision risk potential field (CRPF) is constructed to modify the collision area calculated by the VO algorithm. A vehicle dynamic model is presented to predict vehicle moving states and trajectories. A model predictive control (MPC)-based motion tracking controller is employed to plan collision-avoidance path according to the collision-free principles deduced by the modified VO method. Five simulation scenarios are designed and conducted to demonstrate the control maneuver of the proposed controller framework. The results show that the constructed CRPF can accurately represent the collision risk distribution of the vehicles with different attributes and motion states. The proposed framework can effectively handle the maneuver of obstacle avoidance, lane change, and emergency response. The controller framework also presents good performance to avoid crashes under different levels of collision risk strength.


2021 ◽  
Vol 14 (1) ◽  
pp. 198
Author(s):  
Ho Namgung

A maritime autonomous surface ship (MASS) ensures safety and effectiveness during navigation using its ability to prevent collisions with a nearby target ship (TS). This avoids the loss of human life and property. Therefore, collision avoidance of MASSs has been actively researched recently. However, previous studies did not consider all factors crucial to collision avoidance in compliance with the International Regulations for Preventing Collisions at Sea (COLREGs) Rules 5, 7, 8, and 13–17. In this study, a local route-planning algorithm that takes collision-avoidance actions in compliance with COLREGs Rules using a fuzzy inference system based on near-collision (FIS-NC), ship domain (SD), and velocity obstacle (VO) is proposed. FIS-NC is used to infer the collision risk index (CRI) and determine the time point for collision avoidance. Following this, I extended the VO using the SD to secure the minimum safe distance between the MASS and the TS when they pass each other. Unlike previous methods, the proposed algorithm can be used to perform safe and efficient navigation in terms of near-collision accidents, inferred CRI, and deviation from the course angle route by taking collision-avoidance actions in compliance with COLREGs Rules 5, 7, 8, and 13–17.


2021 ◽  
Vol 9 (11) ◽  
pp. 1202
Author(s):  
Zhengyu Zhou ◽  
Yingjun Zhang ◽  
Shaobo Wang

Large ships are typically with large inertia and longtime delay in motion, in prevailing collision avoidance methods, their maneuverability is generally neglected, there could be a dangerous situation if the system fails to control the ship course as ordered in a timely manner. This paper proposes a coordination system which consists of two algorithms for avoiding risk and then returning to scheduled waypoint. The avoiding risk algorithm are based on VO (velocity obstacle) method, the returning algorithm is derived from LOS (light of sight) guidance. For better performance, the ship model for simulation is a nonlinear Norrbin Model, with the controller improved by CGSA (closed loop gain shaping algorithm) method from traditional PID control, COLREGS (Convention on the International Regulations for Preventing Collisions at Sea) constrains are considered. To test the effectiveness of the proposed system, a series of complex scenarios including Imazu problem are applied.


2021 ◽  
Author(s):  
Jiayuan Zhuang ◽  
Yuhang Zhang ◽  
Peihong Xu ◽  
Yi Zhao ◽  
Jing Luo ◽  
...  

ACTA IMEKO ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 51
Author(s):  
Zoltán Bálint Gyenes ◽  
Emese Gincsainé Szádeczky-Kardoss

Collision-free motion planning for mobile agents is a challenging task, especially when the robot has to move towards a target position in a dynamic environment. The main aim of this paper is to introduce motion-planning algorithms using the changing uncertainties of the sensor-based data of obstacles. Two main algorithms are presented in this work. The first is based on the well-known velocity obstacle motion-planning method. In this method, collision-free motion must be achieved by the algorithm using a cost-function-based optimisation method. The second algorithm is an extension of the often-used artificial potential field. For this study, it is assumed that some of the obstacle data (e.g. the positions of static obstacles) are already known at the beginning of the algorithm (e.g. from a map of the enviroment), but other information (e.g. the velocity vectors of moving obstacles) must be measured using sensors. The algorithms are tested in simulations and compared in different situations.


2021 ◽  
Vol 10 (9) ◽  
pp. 618
Author(s):  
Jia Ren ◽  
Jing Zhang ◽  
Yani Cui

Focusing on the collision avoidance problem for Unmanned Surface Vehicles (USVs) in the scenario of multi-vessel encounters, a USV autonomous obstacle avoidance algorithm based on the improved velocity obstacle method is proposed. The algorithm is composed of two parts: a multi-vessel encounter collision detection model and a path re-planning algorithm. The multi-vessel encounter collision detection model draws on the idea of the velocity obstacle method through the integration of characteristics such as the USV dynamic model in the marine environment, the encountering vessel motion model, and the International Regulations for Preventing Collisions at Sea (COLREGS) to obtain the velocity obstacle region in the scenario of USV and multi-vessel encounters. On this basis, two constraint conditions for the motion state space of USV obstacle avoidance behavior and the velocity obstacle region are added to the dynamic window algorithm to complete a USV collision risk assessment and generate a collision avoidance strategy set. The path re-planning algorithm is based on the premise of the minimum resource cost and uses an improved particle swarm algorithm to obtain the optimal USV control strategy in the collision avoidance strategy set and complete USV path re-planning. Simulation results show that the algorithm can enable USVs to safely evade multiple short-range dynamic targets under COLREGS.


2021 ◽  
pp. 1-23
Author(s):  
F. Sun ◽  
Y. Chen ◽  
X. Xu ◽  
Y. Mu ◽  
Z. Wang

ABSTRACT Considering the shortcomings of current methods for real-time resolution of two-aircraft flight conflicts, a geometric optimal conflict resolution and recovery method based on the velocity obstacle method for two aircraft and a cooperative conflict resolution method for multiple aircraft are proposed. The conflict type was determined according to the relative position and velocity of the aircraft, and a corresponding conflict mitigation strategy was selected. A resolution manoeuvre and a recovery manoeuvre were performed. On the basis of a two-aircraft conflict resolution model, a multi-aircraft cooperative conflict resolution game was constructed to identify an optimal solution for maximising group welfare. The solution and recovery method is simple and effective, and no new flight conflicts are introduced during track recovery. For multi-aircraft conflict resolution, an equilibrium point that maximises the welfare function of the group was identified, and thus, an optimal strategy for multi-aircraft conflict resolution was obtained.


2021 ◽  
Vol 9 (7) ◽  
pp. 761
Author(s):  
Liang Zhang ◽  
Junmin Mou ◽  
Pengfei Chen ◽  
Mengxia Li

In this research, a hybrid approach for path planning of autonomous ships that generates both global and local paths, respectively, is proposed. The global path is obtained via an improved artificial potential field (APF) method, which makes up for the shortcoming that the typical APF method easily falls into a local minimum. A modified velocity obstacle (VO) method that incorporates the closest point of approach (CPA) model and the International Regulations for Preventing Collisions at Sea (COLREGS), based on the typical VO method, can be used to get the local path. The contribution of this research is two-fold: (1) improvement of the typical APF and VO methods, making up for previous shortcomings, and integrated COLREGS rules and good seamanship, making the paths obtained more in line with navigation practice; (2) the research included global and local path planning, considering both the safety and maneuverability of the ship in the process of avoiding collision, and studied the whole process of avoiding collision in a relatively entirely way. A case study was then conducted to test the proposed approach in different situations. The results indicate that the proposed approach can find both global and local paths to avoid the target ship.


Sign in / Sign up

Export Citation Format

Share Document