scholarly journals Degradation Monitoring in Reinforced Concrete with 3D Localization of Rebar Corrosion and Related Concrete Cracking

2021 ◽  
Vol 11 (15) ◽  
pp. 6772
Author(s):  
Charlotte Van Steen ◽  
Els Verstrynge

Corrosion of the reinforcement is a major degradation mechanism affecting durability and safety of reinforced concrete (RC) structures. As the corrosion process starts internally, it can take years before visual damage can be noticed on the surface, resulting in an overall degraded condition and leading to large financial costs for maintenance and repair. The acoustic emission (AE) technique enables the continuous monitoring of the progress of internal cracking in a non-invasive way. However, as RC is a heterogeneous material, reliable damage detection and localization remains challenging. This paper presents extensive experimental research aiming at localizing internal damage in RC during the corrosion process. Results of corrosion damage monitoring with AE are presented and validated on three sample scales: small mortar samples (scale 1), RC prisms (scale 2), and RC beams (scale 3). For each scale, the corrosion process was accelerated by imposing a direct current. It is found that the AE technique can detect damage earlier than visual inspection. However, dedicated filtering is necessary to reliably localize AE events. Therefore, AE signals were filtered by a newly developed post-processing protocol which significantly improves the localization results. On the smallest scale, results were confirmed with 3D micro-CT imaging, whereas on scales 2 and 3, results were compared with surface crack width measurements and resulting rebar corrosion levels.

2000 ◽  
Vol 27 (5) ◽  
pp. 1005-1010 ◽  
Author(s):  
Khaled A Soudki ◽  
Ted G Sherwood

The viability of carbon fibre reinforced polymer (CFRP) laminates for the strengthening of corrosion damaged reinforced concrete bridge girders is addressed in this paper. Ten reinforced concrete beams (100 × 150 × 1200 mm) with variable chloride levels (0-3%) were constructed. Six beams were strengthened by externally epoxy bonding CFRP laminates to the concrete surface. The tensile reinforcements of three unstrengthened and four strengthened specimens were subjected to accelerated corrosion by means of impressed current to 5, 10, and 15% mass loss. Strain gauges were placed on the CFRP laminates to monitor and quantify tensile strains induced by the corrosion process. Following the corrosion phase, the specimens were tested in flexure in a four-point bending regime. Test results revealed that CFRP laminates successfully confined the corrosion cracking, and the total expansion of the laminate exhibited an exponential increase throughout the corrosion process. All the strengthened beams exhibited increased stiffness over the unstrengthened specimens and marked increases in the yield and ultimate strength. The CFRP strengthening scheme was able to restore the capacity of corrosion damaged concrete beams up to 15% mass loss.Key words: CFRP laminates, corrosion, confinement, expansion, load tests, strengthening, bond strength, reinforced concrete.


2016 ◽  
Vol 6 (3) ◽  
pp. 272-283
Author(s):  
Y. Hernández ◽  
O. Troconis de Rincón ◽  
A. Torres ◽  
S. Delgado ◽  
J. Rodríguez ◽  
...  

Relación entre la velocidad de corrosión de la armadura y el ancho de fisuras en vigas de concreto armado expuestas a ambientes que simulan el medio marino  RESUMENEsta investigación presenta una relación empírica entre la velocidad de corrosión de la armadura y la velocidad de ensanchamiento de fisuras por corrosión del recubrimiento de concreto en vigas, con o sin aplicación de carga. Se evaluaron vigas de concreto armado, expuestas a un proceso de corrosión natural mediante el rociado con solución salina al 3,5 %p/p de NaCl, para acelerar el proceso corrosivo de la armadura, mediante ensayos electroquímicos. El ancho de fisuras se evaluó mensualmente para estimar la relación existente entre éste y la pérdida de sección de la armadura. Los resultados demuestran que existe una relación directa entre la propagación del ancho de fisuras y la velocidad de corrosión, observando fisuras de mayor ancho en vigas cargadas.Palabras clave: corrosion; concreto armado; vigas cargadas; ancho de fisuras. Reinforcement corrosion rate and crack width relationship in concrete beams exposed to simulated marine environment ABSTRACTThis investigation presents an empirical correlation between the rebar corrosion rate and the corrosion-induced crack width propagation rate produced on beam's concrete cover, with or without load application to these beams. Reinforced concrete beams were evaluated, exposed to a natural corrosion process by spraying with 3.5 %w/w NaCl solution, to accelerate the rebar corrosion process, was performed with electrochemical tests. The beams corrosion-cracking evaluation was performed once every month, to determine the relation between crack width and the rebar corrosion loss. The results showed a direct relation between crack width propagation and rebar corrosion rate, showing wider cracks in the loaded beams.Keywords: corrosion; reinforced concrete; loaded beams; crack widths. Relação entre a velocidade de corrosão da armadura e a largura das fissuras em vigas de concreto armado expostas a ambientes que simulam o ambiente marinho RESUMOEsta pesquisa apresenta uma relação empírica entre a taxa de corrosão da armadura e a abertura de fissuras por efeito da corrosão da armadura em vigas de concreto, com ou sem aplicação de carga. Foram avaliadas vigas de concreto armado, expostas a um processo de corrosão natural por pulverização com solução salina a concentração de 3,5% de NaCl, para acelerar o processo de corrosão da armadura, mediante ensaios eletroquímicos. A abertura das fissuras foi avaliada mensalmente para estimar a relação entre ela e a perda de seção da armadura. Os resultados mostram que existe uma relação direta entre a propagação da abertura da fissura e a taxa de corrosão, observando a ocorrência de fissuras de maior abertura nas vigas sob carga.Palavras-chave: corrosão; vigas de concreto armado sob carga; abertura de fissuras. 


2015 ◽  
Vol 1101 ◽  
pp. 368-372
Author(s):  
Sai Sai Wang

The main objective of this study is to parametrically investigate the effect of pre-and post-corrosion and loading damage on concrete-jacketed reinforced concrete (RC) columns under uni-axial loading. A model capable of evaluating the squash load of un-jacketed or jacketed RC columns with and without corrosion damage was induced. The parametric studies based on this model are meant to investigate the effect of rebar corrosion on the axial compression capacity of jacketed RC column. It was concluded that the longitudinal rebar corrosion has more distinct effect on the peak load than that of web rebar. The jacketing rebar corrosion has more distinct effect on the peak load than that of substrate rebar.


Materials ◽  
2021 ◽  
Vol 14 (21) ◽  
pp. 6711
Author(s):  
Paul Oluwaseun Awoyera ◽  
Tobechukwu Austin Nworgu ◽  
Balaji Shanmugam ◽  
Krishna Prakash Arunachalam ◽  
Iman Mansouri ◽  
...  

Corrosion creates a significant degradation mechanism in reinforced concrete (RC) structures, which would require a high cost of maintenance and repair in affected buildings. However, as the cost of repairing corrosion-damaged structures is high, it is therefore pertinent to develop alternative eco-friendly and sustainable methods. In this study, structural retrofitting of corroded reinforced concrete beams was performed using bamboo fiber laminate. Three reinforced normal weight concrete beams were produced, two of which were exposed to laboratory simulated corrosion medium, and the remaining one sample served as control. Upon completion of the corrosion cycle, one of the two corroded beams was retrofitted externally with a prefabricated bamboo fiber laminate by bonding the laminate to the beam surface with the aid of an epoxy resin. The three beams were subjected to loading on a four-point ultimate testing machine, and the loads with corresponding deflections were recorded through the entire load cycle of the beams. Finally, the mass loss of embedded steel reinforcements was determined to measure the effect of corrosion on the beams and the steel. The result showed that corroded beams strengthened with bamboo laminates increase the bearing capacity. Using a single bamboo laminate in the tensile region of the corroded beam increased the ultimate load capacity of the beam up to 21.1% than the corroded beam without retrofit. It was demonstrated in this study that the use of bamboo fiber polymer for strengthening destressed RC beams is a more sustainable approach than the conventional synthetic fibers.


2021 ◽  
pp. 147592172110133
Author(s):  
Charlotte Van Steen ◽  
Hussein Nasser ◽  
Els Verstrynge ◽  
Martine Wevers

Worldwide, asset managers are struggling with the management of ageing infrastructure in reinforced concrete. Early detection of reinforcement corrosion, which is generally considered as the major problem, can help to perform dedicated maintenance and repair. The acoustic emission technique is promising to reach this goal. However, research on the characterisation of the different damage sources during corrosion in reinforced concrete remains scarce. In this article, the characterisation of damage processes is investigated on small reinforced concrete prisms and upscaled to reinforced concrete beams under accelerated conditions in a laboratory environment. Damage sources are assigned based on careful validation with crack width measurements and dummy samples. Signals originating from different acoustic emission sources are compared in the time and frequency domain. Moreover, the continuous wavelet transform is applied to provide information on time–frequency characteristics. The results show that the moment of concrete macro-cracking can be derived from a sudden increase of the cumulative acoustic emission events and cumulative acoustic emission energy. However, validation with crack measurements is required. The shift in both peak and centre frequency of the acoustic emission signals is found to be a better indicator. Wavelet transform allows to distinguish acoustic emission sources when frequency ranges are overlapping. Possible acoustic emission sources such as the corrosion process and concrete cover cracking, are successfully assigned. The major contributions of this article are the characterisation of acoustic emission sources from corrosion damage in reinforced concrete, validation with crack measurements and dummy samples, as well as a dedicated wavelet analysis.


Materials ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 506 ◽  
Author(s):  
Alexandre Mathern ◽  
Jincheng Yang

Nonlinear finite element (FE) analysis of reinforced concrete (RC) structures is characterized by numerous modeling options and input parameters. To accurately model the nonlinear RC behavior involving concrete cracking in tension and crushing in compression, practitioners make different choices regarding the critical modeling issues, e.g., defining the concrete constitutive relations, assigning the bond between the concrete and the steel reinforcement, and solving problems related to convergence difficulties and mesh sensitivities. Thus, it is imperative to review the common modeling choices critically and develop a robust modeling strategy with consistency, reliability, and comparability. This paper proposes a modeling strategy and practical recommendations for the nonlinear FE analysis of RC structures based on parametric studies of critical modeling choices. The proposed modeling strategy aims at providing reliable predictions of flexural responses of RC members with a focus on concrete cracking behavior and crushing failure, which serve as the foundation for more complex modeling cases, e.g., RC beams bonded with fiber reinforced polymer (FRP) laminates. Additionally, herein, the implementation procedure for the proposed modeling strategy is comprehensively described with a focus on the critical modeling issues for RC structures. The proposed strategy is demonstrated through FE analyses of RC beams tested in four-point bending—one RC beam as reference and one beam externally bonded with a carbon-FRP (CFRP) laminate in its soffit. The simulated results agree well with experimental measurements regarding load-deformation relationship, cracking, flexural failure due to concrete crushing, and CFRP debonding initiated by intermediate cracks. The modeling strategy and recommendations presented herein are applicable to the nonlinear FE analysis of RC structures in general.


Materials ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3321
Author(s):  
Hyunjin Ju ◽  
Meirzhan Yerzhanov ◽  
Alina Serik ◽  
Deuckhang Lee ◽  
Jong R. Kim

The consumption of structural concrete in the construction industry is rapidly growing, and concrete will remain the main construction material for increasing urbanization all over the world in the near future. Meanwhile, construction and demolition waste from concrete structures is also leading to a significant environmental problem. Therefore, a proper sustainable solution is needed to address this environmental concern. One of the solutions can be using recycled coarse aggregates (RCA) in reinforced concrete (RC) structures. Extensive research has been conducted in this area in recent years. However, the usage of RCA concrete in the industry is still limited due to the absence of structural regulations appropriate to the RCA concrete. This study addresses a safety margin of RCA concrete beams in terms of shear capacity which is comparable to natural coarse aggregates (NCA) concrete beams. To this end, a database for reinforced concrete beams made of recycled coarse aggregates with and without shear reinforcement was established, collecting the shear specimens available from various works in the existing literature. The database was used to statistically identify the strength margin between RCA and NCA concrete beams and to calculate its safety margin based on reliability analysis. Moreover, a comparability study of RCA beams was conducted with its control specimens and with a database for conventional RC beams.


2019 ◽  
Vol 289 ◽  
pp. 04004
Author(s):  
George Hopartean ◽  
Ted Donchev ◽  
Diana Petkova ◽  
Costas Georgopoulos ◽  
Mukesh Limbachiya ◽  
...  

Fibre reinforced polymers (FRP) have been used as strengthening for existing RC structures for many decades. Lately, there has been a lot of interest in using FRP as internal reinforcement in beams, slabs and columns. One potential area of application could be reinforced concrete frames internally reinforced with GFRP bars. With limited research in this direction, the objective of this publication is to assess the behaviour of glass FRP (GFRP) reinforced concrete frames under reversed cyclic lateral in plane loading and to analyse the seismic performances of such elements. For the purpose of this paper, experimental testing of two 1/3 scaled down frames is conducted in displacement-controlled mode with the loading history according to ACI 374.1-05. The control sample is reinforced with conventional steel reinforcement and the results obtained are compared with the sample reinforced with GFRP bars. In summary, observations on the sample behaviour at specified drift ratio such as load-displacement behaviour, envelope curves and energy dissipation are presented.


Sign in / Sign up

Export Citation Format

Share Document