scholarly journals Deep Learning Model for the Inspection of Coffee Bean Defects

2021 ◽  
Vol 11 (17) ◽  
pp. 8226
Author(s):  
Shyang-Jye Chang ◽  
Chien-Yu Huang

The detection of coffee bean defects is the most crucial step prior to bean roasting. Existing defect detection methods used in the specialty coffee bean industry entail manual screening and sorting, require substantial human resources, and are not standardized. To solve these problems, this study developed a deep learning algorithm to detect defects in coffee beans. The results reveal that when the pooling layer was used to enhance features and reduce neural dimensionality, some of the coffee been features were lost or misclassified. Therefore, a novel dimensionality reduction method was adopted to increase the ability of feature extraction. The developed model also overcame the drawbacks of padding causing blurred image boundaries and the dead neurons causing impeding feature propagation. Images of eight types of coffee beans were used to train and test the proposed detection model. The proposed method was verified to reduce the bias when classifying defects in coffee beans. The detection accuracy rate of the proposed model was 95.2%. When the model was only used to detect the presence of defects, the accuracy rate increased to 100%. Thus, the proposed model is highly accurate in coffee bean defect detection in the classification of eight types of coffee beans.

2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Yiran Feng ◽  
Xueheng Tao ◽  
Eung-Joo Lee

In view of the current absence of any deep learning algorithm for shellfish identification in real contexts, an improved Faster R-CNN-based detection algorithm is proposed in this paper. It achieves multiobject recognition and localization through a second-order detection network and replaces the original feature extraction module with DenseNet, which can fuse multilevel feature information, increase network depth, and avoid the disappearance of network gradients. Meanwhile, the proposal merging strategy is improved with Soft-NMS, where an attenuation function is designed to replace the conventional NMS algorithm, thereby avoiding missed detection of adjacent or overlapping objects and enhancing the network detection accuracy under multiple objects. By constructing a real contexts shellfish dataset and conducting experimental tests on a vision recognition seafood sorting robot production line, we were able to detect the features of shellfish in different scenarios, and the detection accuracy was improved by nearly 4% compared to the original detection model, achieving a better detection accuracy. This provides favorable technical support for future quality sorting of seafood using the improved Faster R-CNN-based approach.


2021 ◽  
Vol 14 (1) ◽  
pp. 106
Author(s):  
Cheng Chen ◽  
Sindhu Chandra ◽  
Yufan Han ◽  
Hyungjoon Seo

Automatic damage detection using deep learning warrants an extensive data source that captures complex pavement conditions. This paper proposes a thermal-RGB fusion image-based pavement damage detection model, wherein the fused RGB-thermal image is formed through multi-source sensor information to achieve fast and accurate defect detection including complex pavement conditions. The proposed method uses pre-trained EfficientNet B4 as the backbone architecture and generates an argument dataset (containing non-uniform illumination, camera noise, and scales of thermal images too) to achieve high pavement damage detection accuracy. This paper tests separately the performance of different input data (RGB, thermal, MSX, and fused image) to test the influence of input data and network on the detection results. The results proved that the fused image’s damage detection accuracy can be as high as 98.34% and by using the dataset after augmentation, the detection model deems to be more stable to achieve 98.35% precision, 98.34% recall, and 98.34% F1-score.


2021 ◽  
Vol 28 (4) ◽  
pp. 241-254
Author(s):  
Ye Chen ◽  
Zhihu Hong ◽  
Yaohua Liao ◽  
Mengmeng Zhu ◽  
Tong Han ◽  
...  

The smart meter is an essential part of an intelligent grid system. Defects in the LCD screen the smart meters affect their use. Therefore, detection of LCD screen defects of smart meters is of great significance for management and use of smart electricity meters. At present, detection methods are mainly realized by manual detection and automatic detection based on machine vision. However, performance of these two methods is not satisfactory. The fault detection task of a smart meter LCD screen can be divided into two parts: smart meter LCD localization and LCD fault detection. Therefore, this paper proposes a twostage system based on deep learning, which combines YOLOv5 with ResNet34. YOLOv5 is used for smart meter LCD localization and the classification network based on ResNet34 for LCD fault detection. We have constructed an LCD screen localization dataset and an LCD screen defect detection dataset to train and test our model. As a result, our model achieves a defect detection accuracy of 98.9% on the dataset proposed in this paper and can accurately detect the common defects of an LCD screen.


Coffee grading is the main procedure in producing homogenous local commercial fair system of pricing in the market and export. Grading coffee is a difficult task during the inspection, because it requires training and experience of the experts. In order to tackle grading difficulties in coffee producing industries and corporates have been employed and trained experts. Even if, those experts do not work effectively due to tiredness, costly, time consuming, inconsistency, bias and other factors. Digital image processing techniques based on automatically extracted features have been explored to classify Ethiopian coffee to corresponding quality grade labels. Samples of those coffee beans were taken from Yirgacheffe Coffee Farmers’ Cooperative Union. On average, 228 images were taken from each of three grade values or levels (grade 1, grade 2 and grade 3). The total number of images taken was 684 containing 6138 coffee beans. To extract coffee bean features and build a classification model for grading coffee, the state of art deep learning algorithm called convolutional Neural Network was used. Base on the experimental results classification accuracy obtained with testing coffee bean images for grade 1, grade 2 and grade 3 coffee beans was 99.51%, 97.56%, and 98.04%, respectively with the overall classification accuracy of 98.38%. This shows a promising result, even if, images are captured under the challenging condition without laboratory setup, such as illumination, different resolution, shadow and orientation which affects greatly the performance of the classifier and hence they are the future research direction that needs further investigations of noise removal techniques.


Technologies ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 14
Author(s):  
James Dzisi Gadze ◽  
Akua Acheampomaa Bamfo-Asante ◽  
Justice Owusu Agyemang ◽  
Henry Nunoo-Mensah ◽  
Kwasi Adu-Boahen Opare

Software-Defined Networking (SDN) is a new paradigm that revolutionizes the idea of a software-driven network through the separation of control and data planes. It addresses the problems of traditional network architecture. Nevertheless, this brilliant architecture is exposed to several security threats, e.g., the distributed denial of service (DDoS) attack, which is hard to contain in such software-based networks. The concept of a centralized controller in SDN makes it a single point of attack as well as a single point of failure. In this paper, deep learning-based models, long-short term memory (LSTM) and convolutional neural network (CNN), are investigated. It illustrates their possibility and efficiency in being used in detecting and mitigating DDoS attack. The paper focuses on TCP, UDP, and ICMP flood attacks that target the controller. The performance of the models was evaluated based on the accuracy, recall, and true negative rate. We compared the performance of the deep learning models with classical machine learning models. We further provide details on the time taken to detect and mitigate the attack. Our results show that RNN LSTM is a viable deep learning algorithm that can be applied in the detection and mitigation of DDoS in the SDN controller. Our proposed model produced an accuracy of 89.63%, which outperformed linear-based models such as SVM (86.85%) and Naive Bayes (82.61%). Although KNN, which is a linear-based model, outperformed our proposed model (achieving an accuracy of 99.4%), our proposed model provides a good trade-off between precision and recall, which makes it suitable for DDoS classification. In addition, it was realized that the split ratio of the training and testing datasets can give different results in the performance of a deep learning algorithm used in a specific work. The model achieved the best performance when a split of 70/30 was used in comparison to 80/20 and 60/40 split ratios.


2021 ◽  
Vol 13 (10) ◽  
pp. 1909
Author(s):  
Jiahuan Jiang ◽  
Xiongjun Fu ◽  
Rui Qin ◽  
Xiaoyan Wang ◽  
Zhifeng Ma

Synthetic Aperture Radar (SAR) has become one of the important technical means of marine monitoring in the field of remote sensing due to its all-day, all-weather advantage. National territorial waters to achieve ship monitoring is conducive to national maritime law enforcement, implementation of maritime traffic control, and maintenance of national maritime security, so ship detection has been a hot spot and focus of research. After the development from traditional detection methods to deep learning combined methods, most of the research always based on the evolving Graphics Processing Unit (GPU) computing power to propose more complex and computationally intensive strategies, while in the process of transplanting optical image detection ignored the low signal-to-noise ratio, low resolution, single-channel and other characteristics brought by the SAR image imaging principle. Constantly pursuing detection accuracy while ignoring the detection speed and the ultimate application of the algorithm, almost all algorithms rely on powerful clustered desktop GPUs, which cannot be implemented on the frontline of marine monitoring to cope with the changing realities. To address these issues, this paper proposes a multi-channel fusion SAR image processing method that makes full use of image information and the network’s ability to extract features; it is also based on the latest You Only Look Once version 4 (YOLO-V4) deep learning framework for modeling architecture and training models. The YOLO-V4-light network was tailored for real-time and implementation, significantly reducing the model size, detection time, number of computational parameters, and memory consumption, and refining the network for three-channel images to compensate for the loss of accuracy due to light-weighting. The test experiments were completed entirely on a portable computer and achieved an Average Precision (AP) of 90.37% on the SAR Ship Detection Dataset (SSDD), simplifying the model while ensuring a lead over most existing methods. The YOLO-V4-lightship detection algorithm proposed in this paper has great practical application in maritime safety monitoring and emergency rescue.


Author(s):  
Xuewu Zhang ◽  
Yansheng Gong ◽  
Chen Qiao ◽  
Wenfeng Jing

AbstractThis article mainly focuses on the most common types of high-speed railways malfunctions in overhead contact systems, namely, unstressed droppers, foreign-body invasions, and pole number-plate malfunctions, to establish a deep-network detection model. By fusing the feature maps of the shallow and deep layers in the pretraining network, global and local features of the malfunction area are combined to enhance the network's ability of identifying small objects. Further, in order to share the fully connected layers of the pretraining network and reduce the complexity of the model, Tucker tensor decomposition is used to extract features from the fused-feature map. The operation greatly reduces training time. Through the detection of images collected on the Lanxin railway line, experiments result show that the proposed multiview Faster R-CNN based on tensor decomposition had lower miss probability and higher detection accuracy for the three types faults. Compared with object-detection methods YOLOv3, SSD, and the original Faster R-CNN, the average miss probability of the improved Faster R-CNN model in this paper is decreased by 37.83%, 51.27%, and 43.79%, respectively, and average detection accuracy is increased by 3.6%, 9.75%, and 5.9%, respectively.


Author(s):  
Zhenying Xu ◽  
Ziqian Wu ◽  
Wei Fan

Defect detection of electromagnetic luminescence (EL) cells is the core step in the production and preparation of solar cell modules to ensure conversion efficiency and long service life of batteries. However, due to the lack of feature extraction capability for small feature defects, the traditional single shot multibox detector (SSD) algorithm performs not well in EL defect detection with high accuracy. Consequently, an improved SSD algorithm with modification in feature fusion in the framework of deep learning is proposed to improve the recognition rate of EL multi-class defects. A dataset containing images with four different types of defects through rotation, denoising, and binarization is established for the EL. The proposed algorithm can greatly improve the detection accuracy of the small-scale defect with the idea of feature pyramid networks. An experimental study on the detection of the EL defects shows the effectiveness of the proposed algorithm. Moreover, a comparison study shows the proposed method outperforms other traditional detection methods, such as the SIFT, Faster R-CNN, and YOLOv3, in detecting the EL defect.


2021 ◽  
Vol 15 (4) ◽  
pp. 18-30
Author(s):  
Om Prakash Samantray ◽  
Satya Narayan Tripathy

There are several malware detection techniques available that are based on a signature-based approach. This approach can detect known malware very effectively but sometimes may fail to detect unknown or zero-day attacks. In this article, the authors have proposed a malware detection model that uses operation codes of malicious and benign executables as the feature. The proposed model uses opcode extract and count (OPEC) algorithm to prepare the opcode feature vector for the experiment. Most relevant features are selected using extra tree classifier feature selection technique and then passed through several supervised learning algorithms like support vector machine, naive bayes, decision tree, random forest, logistic regression, and k-nearest neighbour to build classification models for malware detection. The proposed model has achieved a detection accuracy of 98.7%, which makes this model better than many of the similar works discussed in the literature.


Sign in / Sign up

Export Citation Format

Share Document