scholarly journals Seismic Analysis of Moderate Size Earthquakes Recorded on Stations at Close Epicentral Distances

2022 ◽  
Vol 12 (1) ◽  
pp. 470
Author(s):  
Cvetan Sinadinovski ◽  
Snježana Markušić ◽  
Davor Stanko ◽  
Kevin F. McCue ◽  
Lazo Pekevski

In this study, we analyzed the near-field seismic records of two moderate sized earthquakes in the Western Balkan region: the September 2016 Skopje earthquake, magnitude ML5.3 and the March 2020 Zagreb earthquake, magnitude ML5.5. Such recordings at close epicentral distances are rare and are thus very useful for testing some of the theoretical assumptions used in modeling earthquake risk. Firstly, response spectra were computed using the digital time histories for the three closest stations to the Skopje 2016 earthquake and the two closest stations to the Zagreb 2020 earthquake. Their characteristics were examined in terms of frequency and peak amplitude ranges. Secondly, the Nakamura method was applied to the records from the selected five stations coded SKO, FCE, IZIIS, QUHS, and QARH. The results of the spectral analysis were compared with interpretations from the geological and geotechnical maps at each location. Our findings support the idea that these combined methods can be used to categorize the underlying structural profile to a first approximation and can be used to derive velocity models.

Author(s):  
Jinsuo R. Nie ◽  
Jim Xu ◽  
Joseph I. Braverman

For seismic analysis of nuclear structures, synthetic acceleration time histories are often required and are generated to envelop design response spectra following the U.S. Nuclear Regulatory Commission, Standard Review Plan (SRP) Section 3.7.1. It has been recognized that without an additional check of the power spectral density (PSD) functions, spectral matching alone may not ensure that synthetic acceleration time histories have adequate power over the frequency range of interest. The SRP Section 3.7.1 Appendix A provides a target PSD function for the Regulatory Guide 1.60 horizontal spectral shape. For other spectral shapes, additional guidance on developing the target PSD functions compatible with the design spectra is desired. This paper presents a general procedure for the development of target PSD functions for any practical design response spectral shapes, which has been incorporated into the recent SRP 3.7.1, Revision 4.


1987 ◽  
Vol 3 (2) ◽  
pp. 263-287 ◽  
Author(s):  
N. A. Abrahamson ◽  
B. A. Bolt ◽  
R. B. Darragh ◽  
J. Penzien ◽  
Y. B. Tsai

SMART 1 is the first large digital array of strong-motion seismographs specially designed for engineering and seismological studies of the generation and near-field properties of earthquakes. Since the array began operation in September 1980, it has recorded over 3000 accelerogram traces from 48 earthquakes ranging in local magnitude ( ML) from 3.6 to 7.0. Peak ground accelerations have been recorded up to 0.33g and 0.34g on the horizontal and vertical components, respectively. Epicentral distances have ranged from 3 km 200 km from the array center, and focal depths have ranged from shallow to 100 km. The recorded earthquakes had both reverse and strike-slip focal mechanisms associated with the subduction zone and transform faults. These high quality, digital, ground motions provide a varied resource for earthquake engineering research. Earthquake engineering studies of the SMART 1 ground motion data have led to advances in knowledge in several cases: for example, on frequency-dependent incoherency of free-surface ground motions over short distances, on response of linear systems to multiple support excitations, on attenuation of peak ground-motion parameters and response spectra, on site torsion and phasing effects, and on the identification of wave types. Accelerograms from individual strong-motion seismographs do not, in general, provide such information. This review describes the SMART 1 array and the recorded earthquakes with special engineering applications. Also, it tabulates the unfiltered peak array accelerations, displays some of the recorded ground motion time histories, and summarizes the main engineering research that has made use of SMART 1 data.


2019 ◽  
Vol 3 (Special Issue on First SACEE'19) ◽  
pp. 207-2016
Author(s):  
Guillermo Martinez ◽  
David Castillo ◽  
José Jara ◽  
Bertha Olmos

This paper presents a first approximation of the seismic vulnerability of a sixteenth century building which is part of the historical center of Morelia, Mexico. The city was declared World Heritage by United Nations Educational, Scientific and Cultural Organization in 1991. The modeling and analysis of the building was carried out using a three-dimensional elastic tetrahedral finite elements model which was subjected to probabilistic seismic demands with recurrences of 500 yrs and 1000 yrs in addition to real seismic records. The model was able to correctly identify cracking pattern in different parts of the temple due to gravitational forces. High seismic vulnerability of the arched window and the walls of the middle part of the bell tower of the temple was indicated by the seismic analysis of the model.


Impact ◽  
2017 ◽  
Vol 2017 (1) ◽  
pp. 55-57
Author(s):  
Dijana Vuletic ◽  
Mersudin Avdibegovic

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Hijrah Saputra ◽  
Wahyudi Wahyudi ◽  
Iman Suardi ◽  
Ade Anggraini ◽  
Wiwit Suryanto

AbstractThis study comprehensively investigates the source mechanisms associated with the mainshock and aftershocks of the Mw = 6.3 Yogyakarta earthquake which occurred on May 27, 2006. The process involved using moment tensor inversion to determine the fault plane parameters and joint inversion which were further applied to understand the spatial and temporal slip distributions during the earthquake. Moreover, coseismal slip distribution was overlaid with the relocated aftershock distribution to determine the stress field variations around the tectonic area. Meanwhile, the moment tensor inversion made use of near-field data and its Green’s function was calculated using the extended reflectivity method while the joint inversion used near-field and teleseismic body wave data which were computed using the Kikuchi and Kanamori methods. These data were filtered through a trial-and-error method using a bandpass filter with frequency pairs and velocity models from several previous studies. Furthermore, the Akaike Bayesian Information Criterion (ABIC) method was applied to obtain more stable inversion results and different fault types were discovered. Strike–slip and dip-normal were recorded for the mainshock and similar types were recorded for the 8th aftershock while the 9th and 16th June were strike slips. However, the fault slip distribution from the joint inversion showed two asperities. The maximum slip was 0.78 m with the first asperity observed at 10 km south/north of the mainshock hypocenter. The source parameters discovered include total seismic moment M0 = 0.4311E + 19 (Nm) or Mw = 6.4 with a depth of 12 km and a duration of 28 s. The slip distribution overlaid with the aftershock distribution showed the tendency of the aftershock to occur around the asperities zone while a normal oblique focus mechanism was found using the joint inversion.


2008 ◽  
Author(s):  
Sarata K. Sahoo ◽  
Hiroko Enomoto ◽  
Shinji Tokonami ◽  
Tetsuo Ishikawa ◽  
Predrag Ujić ◽  
...  

2008 ◽  
Vol 99 (8) ◽  
pp. 1324-1328 ◽  
Author(s):  
Zora S. Žunić ◽  
Jerzy W. Mietelski ◽  
Sylwia Błażej ◽  
Paweł Gaca ◽  
Ewa Tomankiewicz ◽  
...  

1982 ◽  
Vol 72 (5) ◽  
pp. 1717-1738 ◽  
Author(s):  
Michel Bouchon ◽  
Keiiti Aki

abstract In the absence of near-field records of differential ground motion induced by earthquakes, we simulate the time histories of strain, tilt, and rotation in the vicinity of earthquake faults embedded in layered media. We consider the case of both strike-slip and dip-slip fault models and study the effect of different crustal structures. The maximum rotational motion produced by a buried 30-km-long strike-slip fault with slip of 1 m is of the order of 3 × 10−4 rad while the corresponding rotational velocity is about 1.5 × 10−3 rad/sec. A simulation of the San Fernando earthquake yields maximum longitudinal strain and tilt a few kilometers from the fault of the order of 8 × 10−4 and 7 × 10−4 rad. These values being small compared to the amplitude of ground displacement, the results suggest that most of the damage occurring in earthquakes is caused by translation motions. We also show that strain and tilt are closely related to ground velocity and that the phase velocities associated with strong ground motions are controlled by the rupture velocity and the basement rock shearwave velocity.


2019 ◽  
Vol 56 (11) ◽  
pp. 1596-1608
Author(s):  
Priyesh Verma ◽  
Ainur Seidalinova ◽  
Dharma Wijewickreme

In current geotechnical seismic design practice, the empirical correlation between equivalent number of uniform cycles (Neq) of shaking and earthquake magnitude (Mw) forms an integral part of liquefaction potential evaluation. This relationship, in turn, is used to derive the magnitude scaling factors that are commonly used in field-based liquefaction evaluation procedures. The Neq versus Mw relationship for liquefaction assessment was examined for fine-grained soils using time-histories in the range 5 < Mw ≤ 9, especially including strong ground motion time-histories from the latest subduction zone earthquakes with Mw > 8.0. The experimental database available from cyclic direct simple shear tests conducted on natural fine-grained soils retrieved from undisturbed soil sampling was used to obtain the cyclic shear resistance weighting curves for the study. The work presented herein has contributed to further improving the current models used to represent magnitude scaling factor (MSF) values for large earthquake magnitudes and the functional dependency of this parameter on soil type. The MSF–Mw curve derived for low-plastic Fraser River Delta silt lies in-between the MSF curves derived for clean sand and clay, resonating with the inferences that have been made that the silt behavior can neither be considered sand-like nor clay-like.


2019 ◽  
Vol 10 (04) ◽  
pp. 1850011 ◽  
Author(s):  
Mohammad Katebi ◽  
Behrouz Gatmiri ◽  
Pooneh Maghoul

This paper investigates topographic effects of rocky valleys with irregular topographic conditions subjected to vertically propagating SV waves of Ricker type using a boundary element code. Valleys with two intersecting slopes, [Formula: see text] and [Formula: see text], are modelled in order to study their combined effects on ground motion. Presented in the form of pseudo-acceleration response spectra, results of this work can be extended to similar topographies. The main findings are: (i) [Formula: see text] (the first slope angle) and [Formula: see text] (L is the half width of the valley and [Formula: see text] is its corresponding height) have amplifying effects, and [Formula: see text] (the second slope angle) has de-amplifying effects on the site response. (ii) [Formula: see text] has a straight effect on intensifying the effects of both [Formula: see text] and [Formula: see text]. (iii) The combined effects of slope angles have been found to be important in modifying the response so more than a single slope should be considered for seismic analysis. (iv) Engineers should use the maximum amplification of 2.4 in case of valleys with the first and second slope angles below [Formula: see text].


Sign in / Sign up

Export Citation Format

Share Document