scholarly journals Soil-Gas Concentrations and Flux Monitoring at the Lacq-Rousse CO2-Geological Storage Pilot Site (French Pyrenean Foreland): From Pre-Injection to Post-Injection

2019 ◽  
Vol 9 (4) ◽  
pp. 645 ◽  
Author(s):  
Frédérick Gal ◽  
Zbigniew Pokryszka ◽  
Nadège Labat ◽  
Karine Michel ◽  
Stéphane Lafortune ◽  
...  

Soil-gas concentrations and flux were measured during 20 separate measurement campaigns at the TOTAL Lacq-Rousse carbon capture and storage (CCS) pilot site, southern France, where 51,000 tons of CO2 were injected in a depleted natural gas field. Baseline data (September 2008 to December 2009) are compared to monitoring data from the injection (March 2010 to March 2013) and post-injection (February 2014 to December 2015) periods. CO2 soil-gas concentrations varied from atmospheric concentrations to more than 16% vol. with 1.4% as median value. Summer data showed high CO2 concentrations in the soil that remained quite high during winter. Median CO2 flux at the soil/atmosphere interface was close to 4.4 cm3·min−1·m−2. Carbon-isotope ratios measured on CO2 in soil gas had a mean value of −23.5 ± 3.1‰, some deviation being due to atmospheric CO2. Comparison between different gas species and the influence of temperature, pressure and soil-water content suggest that gases in near-surface environments are produced locally and naturally, and are unrelated to CO2 ascending from the storage reservoir. Monitoring of CO2 injection and the use of threshold levels is discussed as part of a practical approach considering specific regulations for the Lacq-Rousse CCS pilot experiment and constraints for the site operator.

Energies ◽  
2019 ◽  
Vol 12 (21) ◽  
pp. 4211
Author(s):  
Timofey Eltsov ◽  
Tadeusz W. Patzek

The non-corrosive, electrically resistive fiberglass casing materials may improve the economics of oil and gas field projects. At moderate temperatures (<120 °C), fiberglass casing is superior to carbon steel casing in applications that involve wet CO2 injection and/or production, such as carbon capture and storage, and CO2-based enhanced oil recovery (EOR) methods. Without a perfect protective cement shell, carbon steel casing in contact with a concentrated formation brine corrodes and the fiberglass casing is superior again. Fiberglass casing enables electromagnetic logging for exploration and reservoir monitoring, but it requires the development of new logging methods. Here we present a technique for the detection of integrity of magnetic cement behind resistive fiberglass casing. We demonstrate that an optimized induction logging tool can detect small changes in the magnetic permeability of cement through a non-conductive casing in a vertical (or horizontal) well. We determine both the integrity and solidification state of the cement-filled annulus behind the casing. Changes in magnetic permeability influence mostly the real part of the vertical component of the magnetic field. The signal amplitude is more sensitive to a change in the magnetic properties of the cement, rather than the signal phase. Our simulations showed that optimum separation between the transmitter and receiver coils ranged from 0.25 to 0.6 m, and the most suitable magnetic field frequencies varied from 0.1 to 10 kHz. A high-frequency induction probe operating at 200 MHz can measure the degree of solidification of cement. The proposed method can detect borehole cracks filled with cement, incomplete lift of cement, casing eccentricity, and other borehole inhomogeneities.


2009 ◽  
Vol 49 (2) ◽  
pp. 601
Author(s):  
Sandeep Sharma ◽  
Peter Cook ◽  
Charles Jenkins

The CO2CRC has a demonstration storage project underway in the Otway Basin of southwest Victoria. The aim of the project is to demonstrate that carbon capture and storage (CCS) can be performed under Australian conditions. The project involves extracting CO2 rich gas from an existing field and injecting it into a nearby depleted natural gas field for long-term storage. Injection commenced in April 2008, and approximately 100,000 tonnes of CO2 are planned to be injected through a new injection well drilled in 2007. A multi-disciplinary monitoring and verification (M&V) program has been in place from late 2005 and a baseline state of the subsurface, near surface and atmospheric conditions has been comprehensively defined prior to the commencement of injection. The project has also been instrumental in unravelling the legislative overlaps between jurisdictions and has helped shape the regulatory regime being developed by the Victorian Government. At the present time over 35,000 tonnes of CO2 has been injected and a variety of monitoring data collected. This paper aims to provide an update on the holistic project and how some of the findings may lead to expediting commercial uptake of CCS in Australia.


2021 ◽  
Author(s):  
Mahesh S. Picha ◽  
M. Azuan B. Abu Bakar ◽  
Parimal A. Patil ◽  
Faiz A. Abu Bakar ◽  
Debasis P. Das ◽  
...  

Abstract Oil & Gas Operators are focusing on zero carbon emission to comply with government's changing rules and regulations, which play an important role in the encouragement of carbon capture initiatives. This paper aims to give insights on the world's first offshore CCS project in carbonate reservoir, where wells will be drilled to inject CO2, and store produced CO2 from contaminated fields. To safeguard the storage containment, the integrity of all wells needs to be scrutinized. Development wells in the identified depleted gas field are more than 40 years old and were not designed with consideration of high CO2 concentration in the reservoir. In consequence, the possibility of well leakage due to accelerated corrosion channeling and cracks, along the wellbore cannot be ignored and require careful evaluation. Rigorous process has been adopted in assessing the feasibility for converting existing gas producers into CO2 injectors. The required defined basis of designs for gas producer and CO2 injection wells differs in a great extent and this governs the re-usability of wells for CO2 injection or necessity to be abandoned. Three (3) new CO2 injectors with fat to slim design approach, corrosion resistant alloy (CRA) material and CO2 resistant cement are designed in view to achieve lifecycle integrity. Optimum angle of 53 deg and maintaining the injection pressure of 50 bar at 90 MSCFD rate is required for the injection of supercritical CO2 for 20 years. During well execution, challenges such as anti-collision risk, total loss scenarios while drilling in Carbonate reservoir need to be addressed before execution. The completion design is also focusing on having minimal number of completion jewelries to reduce pressure differential and potential leak paths from tubing hangar down to the end of lower completion. The selection of downhole safety valve (TRSV) type is of high importance to accommodate CO2 phase attributes at different pressure/temperature. Fiber Optic is included for monitoring the migration of CO2 plume by acquiring seismic survey and for well integrity by analyzing DAS/DTS data.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6456
Author(s):  
Ewa Knapik ◽  
Katarzyna Chruszcz-Lipska

Worldwide experiences related to geological CO2 storage show that the process of the injection of carbon dioxide into depleted oil reservoirs (CCS-EOR, Carbon Capture and Storage—Enhanced Oil Recovery) is highly profitable. The injection of CO2 will allow an increasing recovery factor (thus increasing CCS process profitability) and revitalize mature reservoirs, which may lead to oil spills due to pressure buildups. In Poland, such a solution has not yet been implemented in the industry. This work provides additional data for analysis of the possibility of the CCS-EOR method’s implementation for three potential clusters of Polish oil reservoirs located at a short distance one from another. The aim of the work was to examine the properties of reservoir fluids for these selected oil reservoirs in order to assure a better understanding of the physicochemical phenomena that accompany the gas injection process. The chemical composition of oils was determined by gas chromatography. All tested oils represent a medium black oil type with the density ranging from 795 to 843 g/L and the viscosity at 313 K, varying from 1.95 to 5.04 mm/s. The content of heavier components C25+ is up to 17 wt. %. CO2–oil MMP (Minimum Miscibility Pressure) was calculated in a CHEMCAD simulator using the Soave–Redlich–Kwong equation of state (SRK EoS). The oil composition was defined as a mixture of n-alkanes. Relatively low MMP values (ca. 8.3 MPa for all tested oils at 313 K) indicate a high potential of the EOR method, and make this geological CO2 storage form more attractive to the industry. For reservoir brines, the content of the main ions was experimentally measured and CO2 solubility under reservoir conditions was calculated. The reservoir brines showed a significant variation in properties with total dissolved solids contents varying from 17.5 to 378 g/L. CO2 solubility in brines depends on reservoir conditions and brine chemistry. The highest calculated CO2 solubility is 1.79 mol/kg, which suggest possible CO2 storage in aquifers.


2020 ◽  
Vol 8 ◽  
Author(s):  
Yuji Sano ◽  
Takanori Kagoshima ◽  
Naoto Takahata ◽  
Kotaro Shirai ◽  
Jin-Oh Park ◽  
...  

Carbon capture and storage (CCS) is considered a key technology for reducing CO2 emissions into the atmosphere. Nonetheless, there are concerns that if injected CO2 migrates in the crust, it may trigger slip of pre-existing faults. In order to test if this is the case, covariations of carbon, hydrogen, and oxygen isotopes of groundwater measured from Uenae well, southern Hokkaido, Japan are reported. This well is located 13 km away from the injection point of the Tomakomai CCS project and 21 km from the epicenter of September 6th, 2018 Hokkaido Eastern Iburi earthquake (M 6.7). Carbon isotope composition was constant from June 2015 to February 2018, and decreased significantly from April 2018 to November 2019, while total dissolved inorganic carbon (TDIC) content showed a corresponding increase. A decrease in radiocarbon and δ13C values suggests aquifer contamination by anthropogenic carbon, which could possibly be attributable to CCS-injected CO2. If such is the case, the CO2 enriched fluid may have initially migrated through permeable channels, blocking the fluid flow from the source region, increasing pore pressure in the focal region and triggering the natural earthquake where the brittle crust is already critically stressed.


SPE Journal ◽  
2013 ◽  
Vol 18 (03) ◽  
pp. 486-494 ◽  
Author(s):  
Changbing Yang ◽  
Katherine Romanak ◽  
Susan Hovorka ◽  
Robert M. Holt ◽  
Jeff Lindner ◽  
...  

Summary An early field project of the Southeast Regional Carbon Sequestration Partnership (SECARB) was conducted in Cranfield oil field, western Mississippi. Carbon dioxide (CO2) was injected into coarse-grained fluvial deposits of the Cretaceous lower Tuscaloosa formation, forming a gentle anticline at depths of 3300 m. CO2 injection started in July 2008, increasing to 23 wells (as of May 2011), with total injection rates greater than 1 million tons/yr. Focused monitoring programs of the deep subsurface and near surface have been implemented in different study areas. Here we present results of the near-surface monitoring program over a 3-year period, including shallow groundwater monitoring and soil-gas monitoring. A general methodology of detecting CO2 leakage into shallow groundwater chemistry is proposed. A set of geochemical indicator parameters was identified on the basis of the characterization of groundwater geochemistry, and these were further tested and validated using numerical modeling approaches, laboratory experiments, and field experiments. For soil-gas monitoring, a site (P-site) containing a plugged and abandoned well, a nearby open pit, and an engineered pad (representing a typical industrial near-surface environment for soil-gas monitoring) was selected for detailed study. The site was heavily instrumented with various sensors for measuring soil-gas concentrations at different depths, soil-water content, matric potential, and weather information. Three monitoring technologies were assessed: soil CO2 concentration measurements, CO2 flux measurements on the land surface, and multiple soil-gas component measurements. Results indicate that soil-gas-component measurements provide reliable information for gas-leakage detection. Methodologies of near-surface monitoring developed in this study can be used to improve CO2-leakage monitoring at other CO2 sequestration projects. This early field project was funded by the US Department of Energy, National Energy Technology Laboratory, as part of the Regional Carbon Sequestration Partnerships (RCSP) program. SECARB is led by the Southern States Energy Board (SSEB).


2019 ◽  
Author(s):  
Paolo Rizzato ◽  
Daniele Castano ◽  
Leili Moghadasi ◽  
Dario Renna ◽  
Patrizia Pisicchio ◽  
...  

2006 ◽  
Vol 46 (1) ◽  
pp. 435
Author(s):  
B. Hooper ◽  
B. Koppe ◽  
L. Murray

The Latrobe Valley in Victoria’s Gippsland Basin is the location of one of Australia’s most important energy resources—extremely thick, shallow brown coal seams constituting total useable reserves of more than 50,000 million tonnes. Brown coal has a higher moisture content than black coal and generates more CO2 emissions per unit of useful energy when combusted. Consequently, while the Latrobe Valley’s power stations provide Australia’s lowest- cost bulk electricity, they are also responsible for over 60 million tonnes of CO2 emissions per year—over half of the Victorian total. In an increasingly carbon constrained world the ongoing development of the Latrobe Valley brown coal resource is likely to require a drastic reduction in the CO2 emissions from new coal use projects—and carbon capture and storage (CCS) has the potential to meet such deep cuts. The offshore Gippsland Basin, the site of major producing oil and gas fields, has the essential geological characteristics to provide a high-volume, low-cost site for CCS. The importance of this potential to assist the continuing use of the nation’s lowest-cost energy source prompted the Australian Government to fund the Latrobe Valley CO2 Storage Assessment (LVCSA).The LVCSA proposal was initiated by Monash Energy (formerly APEL, and now a 100% subsidiary of Anglo American)—the proponent of a major brown coal-to-liquids plant in the Latrobe Valley. Monash Energy’s plans for the 60,000 BBL per day plant include CCS to store about 13 million tonnes of CO2 per year. The LVCSA, undertaken for Monash Energy by the Cooperative Research Centre for Greenhouse Gas Technologies (CO2CRC), provides a medium to high-level technical and economic characterisation of the volume and cost potential for secure geosequestration of CO2 produced by the use of Latrobe Valley brown coal (Hooper et al, 2005a). The assessment’s scope includes consideration of the interaction between CO2 injection and oil and gas production, and its findings have been publicly released for use by CCS proponents, oil and gas producers and all other interested parties as an executive summary, (Hooper et al, 2005b), a fact sheet (Hooper et al, 2005c) and a presentation (Hooper et al, 2005d)).The LVCSA identifies the key issues and challenges for implementing CCS in the Latrobe Valley and provides a reference framework for the engagement of stakeholders. In effect the LVCSA constitutes a pre-feasibility study for the implementation of geosequestration in support of the continuing development of Victoria’s brown coal resources.The LVCSA findings indicate that the Gippsland Basin has sufficient capacity to safely and securely store large volumes of CO2 and may provide a viable means of substantially reducing greenhouse gas emissions from coal-fired power plants and other projects using brown coal in the Latrobe Valley. The assessment also indicates that CO2 injection could well be designed to avoid any adverse impact on adjacent oil and gas production, so that CO2 injection can begin near fields that have not yet come to the end of their productive lives. However, CCS proposals involving adjacent injection and production will require more detailed risk management strategies and continuing cooperation between prospective injectors and existing producers.


2020 ◽  
Author(s):  
Ulrich Wolfgang Weber ◽  
Katja Heeschen ◽  
Martin Zimmer ◽  
Martin Raphaug ◽  
Klaus Hagby ◽  
...  

&lt;p&gt;The ECCSEL Svelvik CO&lt;sub&gt;2&lt;/sub&gt; Field Lab outside Oslo has been set up for water and CO&lt;sub&gt;2&lt;/sub&gt; injection experiments. At the site, ongoing and future investigations on monitoring techniques for carbon capture and storage (CCS) shall support the development of CCS as a climate change mitigation technology in Norway.&lt;/p&gt;&lt;p&gt;In 2019, four 100 m deep injection wells with a sophisticated physical monitoring setup were established. For chemical monitoring a fluid sampling system at injection depth was installed and coupled to a continuously measuring mass spectrometer for observing CO&lt;sub&gt;2&lt;/sub&gt; distribution. Alongside, a network of soil gas flux chambers (LI-COR 8100) were set up to monitor possible surface leakages.&lt;/p&gt;&lt;p&gt;The field lab is placed in a sand quarry within the Svelvik Ridge consisting of Holocene, siliciclastic sediments. Injection is conducted into a saltwater aquifer at 65m, supposedly sealed by clay strata. We sampled the upper fresh water aquifer at 6.5m depth and the storage aquifer at 64 - 65 m depth on dissolved gases before injection in order to design a noble gas tracer for the CO&lt;sub&gt;2&lt;/sub&gt; injection experiment. Elevated helium concentrations in the saline aquifer indicate natural radiogenic accumulation; meanwhile krypton concentrations were not naturally increased.&lt;/p&gt;&lt;p&gt;During an injection experiment in fall 2019, we added noble gases, i.e. krypton and helium, in two subsequent injection cycles, three days and one week, respectively. Outgassing was observed and high helium concentrations verified a leakage at the injection well, which we quantified with a flux chamber.&lt;/p&gt;


Nukleonika ◽  
2014 ◽  
Vol 59 (1) ◽  
pp. 3-7
Author(s):  
Stanisław Chałupnik ◽  
Małgorzata Wysocka

Abstract Poland, due to the ratification of the Kioto Protocol, is obliged to diminish the emission of greenhouse gases. One of the possible solutions of this problem is CO2 sequestration (CCS - carbon capture and storage). Such an option is a priority in the European Union. On the other hand, CO2 sequestration may be potentially risky in the case of gas leakage from underground reservoirs. The most dangerous event may be a sudden release of the gas onto the surface. Therefore, it is very important to know if there is any escape of CO2 from underground gas reservoirs, created as a result of sequestration. Such information is crucial to ensure safety of the population in areas located above geological reservoirs. It is possible to assess the origin of carbon dioxide, if the measurement of radiocarbon 14C concentration in this gas is done. If CO2 contains no 14C, it means, that the origin of the gas is either geological or the gas has been produced as a result of combustion of fossil fuels, like coal. A lot of efforts are focused on the development of monitoring methods to ensure safety of CO2 sequestration in geological formations. A radiometric method has been tested for such a purpose. The main goal of the investigations was to check the application possibility of such a method. The technique is based on the liquid scintillation counting of samples. The gas sample is at first bubbled through the carbon dioxide adsorbent, afterwards the adsorbent is mixed with a dedicated cocktail and measured in a low-background liquid scintillation spectrometer Quantulus. The described method enables measurements of 14C in mine and soil gas samples.


Sign in / Sign up

Export Citation Format

Share Document