scholarly journals Optical Feedback Interferometry Based Microfluidic Sensing: Impact of Multi-Parameters on Doppler Spectral Properties

2019 ◽  
Vol 9 (18) ◽  
pp. 3903 ◽  
Author(s):  
Yu Zhao ◽  
Thierry Camps ◽  
Véronique Bardinal ◽  
Julien Perchoux

As a compact and simple sensing technique, optical feedback interferometry (OFI) can be a promising flowmetry method in various microfluidic applications. In this paper, OFI-based flowmetry sensor performance in a microscale flow scheme is studied theoretically and experimentally. An innovating model and different numerical methods are investigated, where the scattering light angle distribution is involved to predict the Doppler frequency distribution. For the first time, our model describes the influences of multiple OFI sensor system characteristics, such as flowing particle size, concentration, channel interface reflectivity and channel dimension, on the OFI signal spectral performances. In particular, a significant OFI signal level enhancement was achieved by deposing a high reflectivity gold layer on the rear channel interface due to the increased forward scattered light reflection. The consistent experimental validation associated with the simulations verifies this numerical simulation method’s reliability. The numerical methods presented here provide a new tool to design novel microfluidic reactors and sensors.

2016 ◽  
Vol 24 (21) ◽  
pp. 23849 ◽  
Author(s):  
Yu Zhao ◽  
Julien Perchoux ◽  
Lucie Campagnolo ◽  
Thierry Camps ◽  
Reza Atashkhooei ◽  
...  

2018 ◽  
Vol 64 (247) ◽  
pp. 771-780 ◽  
Author(s):  
PAT WONGPAN ◽  
DAVID J. PRIOR ◽  
PATRICIA J. LANGHORNE ◽  
KATHERINE LILLY ◽  
INGA J. SMITH

ABSTRACTWe have mapped the full crystallographic orientation of sea ice using electron backscatter diffraction (EBSD). This is the first time EBSD has been used to study sea ice. Platelet ice is a feature of sea ice near ice shelves. Ice crystals accumulate as an unconsolidated sub-ice platelet layer beneath the columnar ice (CI), where they are subsumed by the advancing sea–ice interface to form incorporated platelet ice (PI). As is well known, in CI the crystal preferred orientation comprises dominantly horizontal c-axes, while PI has c-axes varying between horizontal and vertical. For the first time, this study shows the a-axes of CI and PI are not random. Misorientation analysis has been used to illuminate the possible drivers of these alignments. In CI the misorientation angle distribution from random pairs and neighbour pairs of grains are indistinguishable, indicating the distributions are a consequence of crystal preferred orientation. Geometric selection during growth will develop the a-axis alignment in CI if ice growth in water is fastest parallel to the a-axis, as has previously been hypothesised. In contrast, in PI random-pair and neighbour-pair misorientation distributions are significantly different, suggesting mechanical rotation of crystals at grain boundaries as the most likely explanation.


2014 ◽  
Vol 2014 ◽  
pp. 1-13 ◽  
Author(s):  
Florin Pop

Modern physics is based on both theoretical analysis and experimental validation. Complex scenarios like subatomic dimensions, high energy, and lower absolute temperature are frontiers for many theoretical models. Simulation with stable numerical methods represents an excellent instrument for high accuracy analysis, experimental validation, and visualization. High performance computing support offers possibility to make simulations at large scale, in parallel, but the volume of data generated by these experiments creates a new challenge for Big Data Science. This paper presents existing computational methods for high energy physics (HEP) analyzed from two perspectives: numerical methods and high performance computing. The computational methods presented are Monte Carlo methods and simulations of HEP processes, Markovian Monte Carlo, unfolding methods in particle physics, kernel estimation in HEP, and Random Matrix Theory used in analysis of particles spectrum. All of these methods produce data-intensive applications, which introduce new challenges and requirements for ICT systems architecture, programming paradigms, and storage capabilities.


2021 ◽  
Vol 922 (2) ◽  
pp. 271
Author(s):  
Ding Sheng ◽  
Kaijun Liu ◽  
V. Florinski ◽  
J. D. Perez

Abstract Hybrid simulations in 2D space and 3D velocity dimensions with continuous injection of pickup ions (PUIs) provide insight into the plasma processes that are responsible for the pitch angle scattering of PUIs outside the heliopause. The present investigation includes for the first time continuous injection of PUIs and shows how the scattering depends on the energy of the PUIs and the strength of the background magnetic field as well as the dependence on the injection rate of the time for the isotropization of the pitch angle distribution. The results demonstrate that, with the gradual injection of PUIs of a narrow ring velocity distribution perpendicular to the background magnetic field, oblique mirror mode waves develop first, followed by the growth of quasiparallel propagating ion cyclotron waves. Subsequently, the PUIs are scattered by the excited waves and gradually approach an isotropic distribution. A time for isotropization is defined to be the time at which T ∣∣/T ⊥, i.e., the ratio of the parallel to perpendicular PUI thermal energy changes from ≈0 to ≈0.15. By varying the PUI injection rate, estimates of the time for the PUI distribution to be isotropized are presented. The isotropization time obtained is shorter, ≈ months, than the time, ≈ years, required by the conventional secondary ENA mechanism to explain the IBEX ENA ribbon.


2013 ◽  
Vol 8 (S299) ◽  
pp. 72-73 ◽  
Author(s):  
Matthew Wahl ◽  
Stanimir Metchev ◽  
Rahul Patel ◽  
Eugene Serabyn ◽  
Dimitri Mawet ◽  
...  

AbstractWe present first imaging results from the PALM-3000 adaptive optics system and PHARO camera on the Hale 5 m telescope. Observations using a vector vortex coronagraph have given us direct detections of the two-ring dusty debris system around the star HD 141569. Our observations reveal the inner clearing in the disk to unprecedentedly small angular separations, and are the most sensitive yet at the H and K bands. We are for the first time able to measure and compare the colors of the scattered light in the inner and outer dust rings, and find that the outer ring is significantly bluer than the inner ring.


Author(s):  
Chih-Tang Peng ◽  
Ji-Cheng Lin ◽  
Chun-Te Lin ◽  
Kuo-Ning Chiang

In this study, a packaged silicon base piezoresistive pressure sensor with thermal stress buffer is designed, fabricated, and measured. A finite element method (FEM) is adopted for design and experimental validation of the sensor performance. Thermal and pressure loading on the sensor is applied to make a comparison between sensor experimental and simulation results. Furthermore, a method that transfers simulation stress data into output voltage is proposed in this study, the results indicate that the experimental result coincides with simulation data.


2020 ◽  
Vol 10 (18) ◽  
pp. 6234
Author(s):  
Ines Delfino ◽  
Maria Lepore ◽  
Rosario Esposito

Different scattering processes take place when photons propagate inside turbid media. Many powerful experimental techniques exploiting these processes have been developed and applied over the years in a large variety of situations from fundamental and applied research to industrial applications. In the present paper, we intend to take advantage of Static Light Scattering (SLS), Dynamic Light Scattering (DLS), and Time-Resolved Transmittance (TRT) for investigating all the different scattering regimes by using scattering suspensions in a very large range of scatterer concentrations. The suspensions were prepared using Intralipid 20%, a material largely employed in studies of the optical properties of turbid media, with concentrations from 10−5% to 50%. By the analysis of the angular and temporal dependence of the scattered light, a more reliable description of the scattering process occurring in these samples can be obtained. TRT measurements allowed us to obtain information on the reduced scattering coefficient, an important parameter largely used in the description of the optical properties of turbid media. TRT was also employed for the detection of inclusions embedded in Intralipid suspensions, by using a properly designed data analysis. The present study allowed us to better elucidate the dependence of scattering properties of Intralipid suspensions in a very large concentration range and the occurrence of the different scattering processes involved in the propagation of light in turbid media for the first time to our knowledge. In so doing, the complementary contribution of SLS, DLS, and TRT in the characterization of turbid media from an optical and structural point of view is strongly evidenced.


2014 ◽  
Vol 2014 ◽  
pp. 1-21 ◽  
Author(s):  
Jonas Asprion ◽  
Oscar Chinellato ◽  
Lino Guzzella

In response to the increasingly stringent emission regulations and a demand for ever lower fuel consumption, diesel engines have become complex systems. The exploitation of any leftover potential during transient operation is crucial. However, even an experienced calibration engineer cannot conceive all the dynamic cross couplings between the many actuators. Therefore, a highly iterative procedure is required to obtain a single engine calibration, which in turn causes a high demand for test-bench time. Physics-based mathematical models and a dynamic optimisation are the tools to alleviate this dilemma. This paper presents the methods required to implement such an approach. The optimisation-oriented modelling of diesel engines is summarised, and the numerical methods required to solve the corresponding large-scale optimal control problems are presented. The resulting optimal control input trajectories over long driving profiles are shown to provide enough information to allow conclusions to be drawn for causal control strategies. Ways of utilising this data are illustrated, which indicate that a fully automated dynamic calibration of the engine control unit is conceivable. An experimental validation demonstrates the meaningfulness of these results. The measurement results show that the optimisation predicts the reduction of the fuel consumption and the cumulative pollutant emissions with a relative error of around 10% on highly transient driving cycles.


2018 ◽  
Vol 35 (2) ◽  
pp. 380 ◽  
Author(s):  
Mindaugas Radziunas ◽  
Mulham Khoder ◽  
Vasile Tronciu ◽  
Jan Danckaert ◽  
Guy Verschaffelt

2021 ◽  
Author(s):  
Nikolaos Tsokanas ◽  
Giuseppe Abbiati ◽  
Konstantinos Kanellopoulos ◽  
Bozidar Stojadinovic

This technical note presents the experimental validation of a hybrid fire testing coordination algorithm recently developed by some of the authors. For the first time, the algorithm is applied to solve the static response of a multiple-degrees-of-freedom hybrid model.


Sign in / Sign up

Export Citation Format

Share Document