scholarly journals A Machine Learning Based Ensemble Forecasting Optimization Algorithm for Preseason Prediction of Atlantic Hurricane Activity

Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 522
Author(s):  
Xia Sun ◽  
Lian Xie ◽  
Shahil Umeshkumar Shah ◽  
Xipeng Shen

In this study, nine different statistical models are constructed using different combinations of predictors, including models with and without projected predictors. Multiple machine learning (ML) techniques are employed to optimize the ensemble predictions by selecting the top performing ensemble members and determining the weights for each ensemble member. The ML-Optimized Ensemble (ML-OE) forecasts are evaluated against the Simple-Averaging Ensemble (SAE) forecasts. The results show that for the response variables that are predicted with significant skill by individual ensemble members and SAE, such as Atlantic tropical cyclone counts, the performance of SAE is comparable to the best ML-OE results. However, for response variables that are poorly modeled by individual ensemble members, such as Atlantic and Gulf of Mexico major hurricane counts, ML-OE predictions often show higher skill score than individual model forecasts and the SAE predictions. However, neither SAE nor ML-OE was able to improve the forecasts of the response variables when all models show consistent bias. The results also show that increasing the number of ensemble members does not necessarily lead to better ensemble forecasts. The best ensemble forecasts are from the optimally combined subset of models.

2012 ◽  
Vol 8 (1) ◽  
pp. 53-57
Author(s):  
S. Siegert ◽  
J. Bröcker ◽  
H. Kantz

Abstract. In numerical weather prediction, ensembles are used to retrieve probabilistic forecasts of future weather conditions. We consider events where the verification is smaller than the smallest, or larger than the largest ensemble member of a scalar ensemble forecast. These events are called outliers. In a statistically consistent K-member ensemble, outliers should occur with a base rate of 2/(K+1). In operational ensembles this base rate tends to be higher. We study the predictability of outlier events in terms of the Brier Skill Score and find that forecast probabilities can be calculated which are more skillful than the unconditional base rate. This is shown analytically for statistically consistent ensembles. Using logistic regression, forecast probabilities for outlier events in an operational ensemble are calculated. These probabilities exhibit positive skill which is quantitatively similar to the analytical results. Possible causes of these results as well as their consequences for ensemble interpretation are discussed.


Author(s):  
Qian Zhou ◽  
Lei Chen ◽  
Wansuo Duan ◽  
Xu Wang ◽  
Ziqing Zu ◽  
...  

AbstractUsing the latest operational version of the ENSO forecast system from the National Marine Environmental Forecasting Center (NMEFC) of China, ensemble forecasting experiments are performed for El Niño-Southern Oscillation (ENSO) events that occurred from 1997 to 2017 by generating initial perturbations of the conditional nonlinear optimal perturbation (CNOP) and Climatically relevant Singular Vector (CSV) structures. It is shown that when the initial perturbation of the leading CSV structure in the ensemble forecast of the CSVs-scheme is replaced by those of the CNOP structure, the resulted ensemble ENSO forecasts of the CNOP+CSVs-scheme tend to possess a larger spread than the forecasts obtained with the CSVs-scheme alone, leading to a better match between the root mean square error and the ensemble spread, a more reasonable Talagrand diagram and an improved Brier skill score (BSS). All these results indicate that the ensemble forecasts generated by the CNOP+CSVs-scheme can improve both the accuracy of ENSO forecasting and the reliability of the ensemble forecasting system. Therefore, ENSO ensemble forecasting should consider the effect of nonlinearity on the ensemble initial perturbations to achieve a much higher skill. It is expected that fully nonlinear ensemble initial perturbations can be sufficiently yielded to produce ensemble forecasts for ENSO, finally improving the ENSO forecast skill to the greatest possible extent. The CNOP will be a useful method to yield fully nonlinear optimal initial perturbations for ensemble forecasting.


2013 ◽  
Vol 141 (10) ◽  
pp. 3477-3497 ◽  
Author(s):  
Mingyue Chen ◽  
Wanqiu Wang ◽  
Arun Kumar

Abstract An analysis of lagged ensemble seasonal forecasts from the National Centers for Environmental Prediction (NCEP) Climate Forecast System, version 2 (CFSv2), is presented. The focus of the analysis is on the construction of lagged ensemble forecasts with increasing lead time (thus allowing use of larger ensemble sizes) and its influence on seasonal prediction skill. Predictions of seasonal means of sea surface temperature (SST), 200-hPa height (z200), precipitation, and 2-m air temperature (T2m) over land are analyzed. Measures of prediction skill include deterministic (anomaly correlation and mean square error) and probabilistic [rank probability skill score (RPSS)]. The results show that for a fixed lead time, and as one would expect, the skill of seasonal forecast improves as the ensemble size increases, while for a fixed ensemble size the forecast skill decreases as the lead time becomes longer. However, when a forecast is based on a lagged ensemble, there exists an optimal lagged ensemble time (OLET) when positive influence of increasing ensemble size and negative influence due to an increasing lead time result in a maximum in seasonal prediction skill. The OLET is shown to depend on the geographical location and variable. For precipitation and T2m, OLET is relatively longer and skill gain is larger than that for SST and tropical z200. OLET is also dependent on the skill measure with RPSS having the longest OLET. Results of this analysis will be useful in providing guidelines on the design and understanding relative merits for different configuration of seasonal prediction systems.


Author(s):  
Nghia H Nguyen ◽  
Dominic Picetti ◽  
Parambir S Dulai ◽  
Vipul Jairath ◽  
William J Sandborn ◽  
...  

Abstract Background and Aims There is increasing interest in machine learning-based prediction models in inflammatory bowel diseases (IBD). We synthesized and critically appraised studies comparing machine learning vs. traditional statistical models, using routinely available clinical data for risk prediction in IBD. Methods Through a systematic review till January 1, 2021, we identified cohort studies that derived and/or validated machine learning models, based on routinely collected clinical data in patients with IBD, to predict the risk of harboring or developing adverse clinical outcomes, and reported its predictive performance against a traditional statistical model for the same outcome. We appraised the risk of bias in these studies using the Prediction model Risk of Bias ASsessment (PROBAST) tool. Results We included 13 studies on machine learning-based prediction models in IBD encompassing themes of predicting treatment response to biologics and thiopurines, predicting longitudinal disease activity and complications and outcomes in patients with acute severe ulcerative colitis. The most common machine learnings models used were tree-based algorithms, which are classification approaches achieved through supervised learning. Machine learning models outperformed traditional statistical models in risk prediction. However, most models were at high risk of bias, and only one was externally validated. Conclusions Machine learning-based prediction models based on routinely collected data generally perform better than traditional statistical models in risk prediction in IBD, though frequently have high risk of bias. Future studies examining these approaches are warranted, with special focus on external validation and clinical applicability.


2018 ◽  
Vol 57 (4) ◽  
pp. 1011-1019 ◽  
Author(s):  
H. F. Dacre ◽  
N. J. Harvey

ABSTRACTVolcanic ash poses an ongoing risk to safety in the airspace worldwide. The accuracy with which volcanic ash dispersion can be forecast depends on the conditions of the atmosphere into which it is emitted. In this study, meteorological ensemble forecasts are used to drive a volcanic ash transport and dispersion model for the 2010 Eyjafjallajökull eruption in Iceland. From analysis of these simulations, the authors determine why the skill of deterministic-meteorological forecasts decreases with increasing ash residence time and identify the atmospheric conditions in which this drop in skill occurs most rapidly. Large forecast errors are more likely when ash particles encounter regions of large horizontal flow separation in the atmosphere. Nearby ash particle trajectories can rapidly diverge, leading to a reduction in the forecast accuracy of deterministic forecasts that do not represent variability in wind fields at the synoptic scale. The flow‐separation diagnostic identifies where and why large ensemble spread may occur. This diagnostic can be used to alert forecasters to situations in which the ensemble mean is not representative of the individual ensemble‐member volcanic ash distributions. Knowledge of potential ensemble outliers can be used to assess confidence in the forecast and to avoid potentially dangerous situations in which forecasts fail to predict harmful levels of volcanic ash.


2007 ◽  
Vol 135 (4) ◽  
pp. 1424-1438 ◽  
Author(s):  
Andrew R. Lawrence ◽  
James A. Hansen

Abstract An ensemble-based data assimilation approach is used to transform old ensemble forecast perturbations with more recent observations for the purpose of inexpensively increasing ensemble size. The impact of the transformations are propagated forward in time over the ensemble’s forecast period without rerunning any models, and these transformed ensemble forecast perturbations can be combined with the most recent ensemble forecast to sensibly increase forecast ensemble sizes. Because the transform takes place in perturbation space, the transformed perturbations must be centered on the ensemble mean from the most recent forecasts. Thus, the benefit of the approach is in terms of improved ensemble statistics rather than improvements in the mean. Larger ensemble forecasts can be used for numerous purposes, including probabilistic forecasting, targeted observations, and to provide boundary conditions to limited-area models. This transformed lagged ensemble forecasting approach is explored and is shown to give positive results in the context of a simple chaotic model. By incorporating a suitable perturbation inflation factor, the technique was found to generate forecast ensembles whose skill were statistically comparable to those produced by adding nonlinear model integrations. Implications for ensemble forecasts generated by numerical weather prediction models are briefly discussed, including multimodel ensemble forecasting.


2021 ◽  
Author(s):  
Hugo Abreu Mendes ◽  
João Fausto Lorenzato Oliveira ◽  
Paulo Salgado Gomes Mattos Neto ◽  
Alex Coutinho Pereira ◽  
Eduardo Boudoux Jatoba ◽  
...  

Within the context of clean energy generation, solar radiation forecast is applied for photovoltaic plants to increase maintainability and reliability. Statistical models of time series like ARIMA and machine learning techniques help to improve the results. Hybrid Statistical + ML are found in all sorts of time series forecasting applications. This work presents a new way to automate the SARIMAX modeling, nesting PSO and ACO optimization algorithms, differently from R's AutoARIMA, its searches optimal seasonality parameter and combination of the exogenous variables available. This work presents 2 distinct hybrid models that have MLPs as their main elements, optimizing the architecture with Genetic Algorithm. A methodology was used to obtain the results, which were compared to LSTM, CLSTM, MMFF and NARNN-ARMAX topologies found in recent works. The obtained results for the presented models is promising for use in automatic radiation forecasting systems since it outperformed the compared models on at least two metrics.


Author(s):  
Paul Gustafson

Abstract The article by Jiang et al (Am J. Epidemiol.) extends quantitative bias analysis from the realm of statistical models to the realm of machine learning algorithms. Given the rooting of statistical models in the spirit of explanation and the rooting of machine learning algorithms in the spirt of prediction, this extension is thought provoking indeed. Some such thoughts are expounded here.


Sign in / Sign up

Export Citation Format

Share Document