scholarly journals A Finitely Axiomatized Non-Classical First-Order Theory Incorporating Category Theory and Axiomatic Set Theory

Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 119
Author(s):  
Marcoen J. T. F. Cabbolet

It is well known that Zermelo-Fraenkel Set Theory (ZF), despite its usefulness as a foundational theory for mathematics, has two unwanted features: it cannot be written down explicitly due to its infinitely many axioms, and it has a countable model due to the Löwenheim–Skolem theorem. This paper presents the axioms one has to accept to get rid of these two features. For that matter, some twenty axioms are formulated in a non-classical first-order language with countably many constants: to this collection of axioms is associated a universe of discourse consisting of a class of objects, each of which is a set, and a class of arrows, each of which is a function. The axioms of ZF are derived from this finite axiom schema, and it is shown that it does not have a countable model—if it has a model at all, that is. Furthermore, the axioms of category theory are proven to hold: the present universe may therefore serve as an ontological basis for category theory. However, it has not been investigated whether any of the soundness and completeness properties hold for the present theory: the inevitable conclusion is therefore that only further research can establish whether the present results indeed constitute an advancement in the foundations of mathematics.

1985 ◽  
Vol 50 (2) ◽  
pp. 289-301
Author(s):  
John Mayberry

My aim here is to investigate the role of global quantifiers—quantifiers ranging over the entire universe of sets—in the formalization of Zermelo-Fraenkel set theory. The use of such quantifiers in the formulas substituted into axiom schemata introduces, at least prima facie, a strong element of impredicativity into the thapry. The axiom schema of replacement provides an example of this. For each instance of that schema enlarges the very domain over which its own global quantifiers vary. The fundamental question at issue is this: How does the employment of these global quantifiers, and the choice of logical principles governing their use, affect the strengths of the axiom schemata in which they occur?I shall attack this question by comparing three quite different formalizations of the intuitive principles which constitute the Zermelo-Fraenkel system. The first of these, local Zermelo-Fraenkel set theory (LZF), is formalized without using global quantifiers. The second, global Zermelo-Fraenkel set theory (GZF), is the extension of the local theory obtained by introducing global quantifiers subject to intuitionistic logical laws, and taking the axiom schema of strong collection (Schema XII, §2) as an additional assumption of the theory. The third system is the conventional formalization of Zermelo-Fraenkel as a classical, first order theory. The local theory, LZF, is already very strong, indeed strong enough to formalize any naturally occurring mathematical argument. I have argued (in [3]) that it is the natural formalization of naive set theory. My intention, therefore, is to use it as a standard against which to measure the strength of each of the other two systems.


1984 ◽  
Vol 49 (4) ◽  
pp. 1333-1338
Author(s):  
Cornelia Kalfa

In [4] I proved that in any nontrivial algebraic language there are no algorithms which enable us to decide whether a given finite set of equations Σ has each of the following properties except P2 (for which the problem is open):P0(Σ) = the equational theory of Σ is equationally complete.P1(Σ) = the first-order theory of Σ is complete.P2(Σ) = the first-order theory of Σ is model-complete.P3(Σ) = the first-order theory of the infinite models of Σ is complete.P4(Σ) = the first-order theory of the infinite models of Σ is model-complete.P5(Σ) = Σ has the joint embedding property.In this paper I prove that, in any finite trivial algebraic language, such algorithms exist for all the above Pi's. I make use of Ehrenfeucht's result [2]: The first-order theory generated by the logical axioms of any trivial algebraic language is decidable. The results proved here are part of my Ph.D. thesis [3]. I thank Wilfrid Hodges, who supervised it.Throughout the paper is a finite trivial algebraic language, i.e. a first-order language with equality, with one operation symbol f of rank 1 and at most finitely many constant symbols.


1972 ◽  
Vol 37 (3) ◽  
pp. 562-568
Author(s):  
Andreas Blass

Consider the Löwenheim-Skolem theorem in the form: If a theory in a countable first-order language has a model, then it has a countable model. As is well known, this theorem becomes false if one omits the hypothesis that the language be countable, for one then has the following trivial counterexample.Example 1. Let the language have uncountably many constants, and let the theory say that they are unequal.To motivate some of our future definitions and to introduce some notation, we present another, less trivial, counterexample.Example 2. Let L0 be the language whose n-place predicate (resp. function) symbols are all the n-place predicates (resp. functions) on the set ω of natural numbers. Let be the standard model for L0; we use the usual notation Th() for its complete theory. Add to L0 a new constant e, and add to Th() an axiom schema saying that e is infinite. By the compactness theorem, the resulting theory T has models. However, none of its models are countable. Although this fact is well known, we sketch a proof in order to refer to it later.By [5, p. 81], there is a family {Aα ∣ < α < c} of infinite subsets of ω, the intersection of any two of which is finite.


Author(s):  
Olivia Caramello

This chapter provides the topos-theoretic background necessary for understanding the contents of the book; the presentation is self-contained and only assumes a basic familiarity with the language of category theory. The chapter begins by reviewing the basic theory of Grothendieck toposes, including the fundamental equivalence between geometric morphisms and flat functors. Then it presents the notion of first-order theory and the various deductive systems for fragments of first-order logic that will be considered in the course of the book, notably including that of geometric logic. Further, it discusses categorical semantics, i.e. the interpretation of first-order theories in categories possessing ‘enough’ structure. Lastly, the key concept of syntactic category of a first-order theory is reviewed; this notion will be used in Chapter 2 for constructing classifying toposes of geometric theories.


1987 ◽  
Vol 30 (4) ◽  
pp. 385-392 ◽  
Author(s):  
Thomas Jech

AbstractWe axiomatize the theory of real and complex numbers in Boolean-valued models of set theory, and prove that every Horn sentence true in the complex numbers is true in any complete Stonean algebra, and provable from its axioms.


1995 ◽  
Vol 1 (1) ◽  
pp. 75-84 ◽  
Author(s):  
John R. Steel

In this paper we shall answer some questions in the set theory of L(ℝ), the universe of all sets constructible from the reals. In order to do so, we shall assume ADL(ℝ), the hypothesis that all 2-person games of perfect information on ω whose payoff set is in L(ℝ) are determined. This is by now standard practice. ZFC itself decides few questions in the set theory of L(ℝ), and for reasons we cannot discuss here, ZFC + ADL(ℝ) yields the most interesting “completion” of the ZFC-theory of L(ℝ).ADL(ℝ) implies that L(ℝ) satisfies “every wellordered set of reals is countable”, so that the axiom of choice fails in L(ℝ). Nevertheless, there is a natural inner model of L(ℝ), namely HODL(ℝ), which satisfies ZFC. (HOD is the class of all hereditarily ordinal definable sets, that is, the class of all sets x such that every member of the transitive closure of x is definable over the universe from ordinal parameters (i.e., “OD”). The superscript “L(ℝ)” indicates, here and below, that the notion in question is to be interpreted in L(R).) HODL(ℝ) is reasonably close to the full L(ℝ), in ways we shall make precise in § 1. The most important of the questions we shall answer concern HODL(ℝ): what is its first order theory, and in particular, does it satisfy GCH?These questions first drew attention in the 70's and early 80's. (See [4, p. 223]; also [12, p. 573] for variants involving finer notions of definability.)


1985 ◽  
Vol 50 (4) ◽  
pp. 953-972 ◽  
Author(s):  
Anne Bauval

This article is a rewriting of my Ph.D. Thesis, supervised by Professor G. Sabbagh, and incorporates a suggestion from Professor B. Poizat. My main result can be crudely summarized (but see below for detailed statements) by the equality: first-order theory of F[Xi]i∈I = weak second-order theory of F.§I.1. Conventions. The letter F will always denote a commutative field, and I a nonempty set. A field or a ring (A; +, ·) will often be written A for short. We shall use symbols which are definable in all our models, and in the structure of natural numbers (N; +, ·):— the constant 0, defined by the formula Z(x): ∀y (x + y = y);— the constant 1, defined by the formula U(x): ∀y (x · y = y);— the operation ∹ x − y = z ↔ x = y + z;— the relation of division: x ∣ y ↔ ∃ z(x · z = y).A domain is a commutative ring with unity and without any zero divisor.By “… → …” we mean “… is definable in …, uniformly in any model M of L”.All our constructions will be uniform, unless otherwise mentioned.§I.2. Weak second-order models and languages. First of all, we have to define the models Pf(M), Sf(M), Sf′(M) and HF(M) associated to a model M = {A; ℐ) of a first-order language L [CK, pp. 18–20]. Let L1 be the extension of L obtained by adjunction of a second list of variables (denoted by capital letters), and of a membership symbol ∈. Pf(M) is the model (A, Pf(A); ℐ, ∈) of L1, (where Pf(A) is the set of finite subsets of A. Let L2 be the extension of L obtained by adjunction of a second list of variables, a membership symbol ∈, and a concatenation symbol ◠.


2012 ◽  
Vol 18 (3) ◽  
pp. 382-402 ◽  
Author(s):  
Albert Visser

AbstractIn his 1967 paper Vaught used an ingenious argument to show that every recursively enumerable first order theory that directly interprets the weak system VS of set theory is axiomatizable by a scheme. In this paper we establish a strengthening of Vaught's theorem by weakening the hypothesis of direct interpretability of VS to direct interpretability of the finitely axiomatized fragment VS2 of VS. This improvement significantly increases the scope of the original result, since VS is essentially undecidable, but VS2 has decidable extensions. We also explore the ramifications of our work on finite axiomatizability of schemes in the presence of suitable comprehension principles.


1999 ◽  
Vol 5 (3) ◽  
pp. 289-302 ◽  
Author(s):  
Gabriel Uzquiano

In [12], Ernst Zermelo described a succession of models for the axioms of set theory as initial segments of a cumulative hierarchy of levels UαVα. The recursive definition of the Vα's is:Thus, a little reflection on the axioms of Zermelo-Fraenkel set theory (ZF) shows that Vω, the first transfinite level of the hierarchy, is a model of all the axioms of ZF with the exception of the axiom of infinity. And, in general, one finds that if κ is a strongly inaccessible ordinal, then Vκ is a model of all of the axioms of ZF. (For all these models, we take ∈ to be the standard element-set relation restricted to the members of the domain.) Doubtless, when cast as a first-order theory, ZF does not characterize the structures 〈Vκ,∈∩(Vκ×Vκ)〉 for κ a strongly inaccessible ordinal, by the Löwenheim-Skolem theorem. Still, one of the main achievements of [12] consisted in establishing that a characterization of these models can be attained when one ventures into second-order logic. For let second-order ZF be, as usual, the theory that results from ZF when the axiom schema of replacement is replaced by its second-order universal closure. Then, it is a remarkable result due to Zermelo that second-order ZF can only be satisfied in models of the form 〈Vκ,∈∩(Vκ×Vκ)〉 for κ a strongly inaccessible ordinal.


2017 ◽  
Vol 82 (1) ◽  
pp. 35-61 ◽  
Author(s):  
ALLEN GEHRET

AbstractThe derivation on the differential-valued field Tlog of logarithmic transseries induces on its value group ${{\rm{\Gamma }}_{{\rm{log}}}}$ a certain map ψ. The structure ${\rm{\Gamma }} = \left( {{{\rm{\Gamma }}_{{\rm{log}}}},\psi } \right)$ is a divisible asymptotic couple. In [7] we began a study of the first-order theory of $\left( {{{\rm{\Gamma }}_{{\rm{log}}}},\psi } \right)$ where, among other things, we proved that the theory $T_{{\rm{log}}} = Th\left( {{\rm{\Gamma }}_{{\rm{log}}} ,\psi } \right)$ has a universal axiomatization, is model complete and admits elimination of quantifiers (QE) in a natural first-order language. In that paper we posed the question whether Tlog has NIP (i.e., the Non-Independence Property). In this paper, we answer that question in the affirmative: Tlog does have NIP. Our method of proof relies on a complete survey of the 1-types of Tlog, which, in the presence of QE, is equivalent to a characterization of all simple extensions ${\rm{\Gamma }}\left\langle \alpha \right\rangle$ of ${\rm{\Gamma }}$. We also show that Tlog does not have the Steinitz exchange property and we weigh in on the relationship between models of Tlog and the so-called precontraction groups of [9].


Sign in / Sign up

Export Citation Format

Share Document