scholarly journals Lassa Virus Circulation in Small Mammal Populations in Bo District, Sierra Leone

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Umaru Bangura ◽  
Jacob Buanie ◽  
Joyce Lamin ◽  
Christopher Davis ◽  
Gédéon Ngiala Bongo ◽  
...  

Lassa fever is a viral hemorrhagic fever caused by the Lassa virus LASV, which was first isolated in the rodent Mastomys natalensis in 1974 in Kenema, Sierra Leone. As little is known about the abundance and the presence of LASV in rodents living in the Bo area, we carried out a small mammal longitudinal population survey. A standardized trapping session was performed in various habitats and seasons in six villages over two years (2014–2016) and samples collected were tested for arenavirus IgG and LASV. A Bayesian phylogenetic analysis was performed on sequences identified by PCR. A total of 1490 small mammals were collected, and 16 rodent species were identified, with M. natalensis (355, 24%) found to be the most prevalent species. Forty-one (2.8%) samples were IgG positive, and 31 of these were trapped in homes and 10 in surrounding vegetation. Twenty-nine of 41 seropositive rodents were M. natalensis. We detected four LASV by PCR in two villages, all found in M. natalensis. Phylogenetic analysis showed that the sequences were distributed within the Sierra Leonean clade within lineage IV, distinguishing a Bo sub-clade older than a Kenema sub-clade. Compared to other settings, we found a low abundance of M. natalensis and a low circulation of LASV in rodents in villages around Bo district.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Megan L. Heinrich ◽  
Matthew L. Boisen ◽  
Diana K. S. Nelson ◽  
Duane J. Bush ◽  
Robert W. Cross ◽  
...  

Abstract Lassa virus (LASV) is the causative agent of Lassa fever, an often-fatal hemorrhagic disease that is endemic in West Africa. Seven genetically distinct LASV lineages have been identified. As part of CEPI’s (Coalition for Epidemic Preparedness Innovations) Lassa vaccine development program, we assessed the potential of the human immune system to mount cross-reactive and cross-protective humoral immune responses to antigens from the most prevalent LASV lineages, which are lineages II and III in Nigeria and lineage IV in Sierra Leone. IgG and IgM present in the blood of Lassa fever survivors from Nigeria or Sierra Leone exhibited substantial cross-reactivity for binding to LASV nucleoprotein and two engineered (linked and prefusion) versions of the glycoproteins (GP) of lineages II–IV. There was less cross-reactivity for the Zinc protein. Serum or plasma from Nigerian Lassa fever survivors neutralized LASV pseudoviruses expressing lineage II GP better than they neutralized lineage III or IV GP expressing pseudoviruses. Sierra Leonean survivors did not exhibit a lineage bias. Neutralization titres determined using LASV pseudovirus assays showed significant correlation with titres determined by plaque reduction with infectious LASV. These studies provide guidance for comparison of humoral immunity to LASV of distinct lineages following natural infection or immunization.


Vaccines ◽  
2019 ◽  
Vol 7 (4) ◽  
pp. 138 ◽  
Author(s):  
Mantlo ◽  
Paessler ◽  
Huang

The family Arenaviridae contains several pathogens of major clinical importance. The Old World (OW) arenavirus Lassa virus is endemic in West Africa and is estimated to cause up to 300,000 infections each year. The New World (NW) arenaviruses Junín and Machupo periodically cause hemorrhagic fever outbreaks in South America. While these arenaviruses are highly pathogenic in humans, recent evidence indicates that pathogenic OW and NW arenaviruses interact with the host immune system differently, which may have differential impacts on viral pathogenesis. Severe Lassa fever cases are characterized by profound immunosuppression. In contrast, pathogenic NW arenavirus infections are accompanied by elevated levels of Type I interferon and pro-inflammatory cytokines. This review aims to summarize recent findings about interactions of these pathogenic arenaviruses with the innate immune machinery and the subsequent effects on adaptive immunity, which may inform the development of vaccines and therapeutics against arenavirus infections.


2020 ◽  
Vol 94 (12) ◽  
Author(s):  
Saori Sakabe ◽  
Jessica N. Hartnett ◽  
Nhi Ngo ◽  
Augustine Goba ◽  
Mambu Momoh ◽  
...  

ABSTRACT Early and robust T cell responses have been associated with survival from Lassa fever (LF), but the Lassa virus-specific memory responses have not been well characterized. Regions within the virus surface glycoprotein (GPC) and nucleoprotein (NP) are the main targets of the Lassa virus-specific T cell responses, but, to date, only a few T cell epitopes within these proteins have been identified. We identified GPC and NP regions containing T cell epitopes and HLA haplotypes from LF survivors and used predictive HLA-binding algorithms to identify putative epitopes, which were then experimentally tested using autologous survivor samples. We identified 12 CD8-positive (CD8+) T cell epitopes, including epitopes common to both Nigerian and Sierra Leonean survivors. These data should be useful for the identification of dominant Lassa virus-specific T cell responses in Lassa fever survivors and vaccinated individuals as well as for designing vaccines that elicit cell-mediated immunity. IMPORTANCE The high morbidity and mortality associated with clinical cases of Lassa fever, together with the lack of licensed vaccines and limited and partially effective interventions, make Lassa virus (LASV) an important health concern in its regions of endemicity in West Africa. Previous infection with LASV protects from disease after subsequent exposure, providing a framework for designing vaccines to elicit similar protective immunity. Multiple major lineages of LASV circulate in West Africa, and therefore, ideal vaccine candidates should elicit immunity to all lineages. We therefore sought to identify common T cell epitopes between Lassa fever survivors from Sierra Leone and Nigeria, where distinct lineages circulate. We identified three such epitopes derived from highly conserved regions within LASV proteins. In this process, we also identified nine other T cell epitopes. These data should help in the design of an effective pan-LASV vaccine.


2020 ◽  
Vol 25 (15) ◽  
Author(s):  
Femke Overbosch ◽  
Mark de Boer ◽  
Karin Ellen Veldkamp ◽  
Pauline Ellerbroek ◽  
Chantal P Bleeker-Rovers ◽  
...  

On 20 November 2019, Lassa fever was diagnosed in a physician repatriated from Sierra Leone to the Netherlands. A second physician with suspected Lassa fever, repatriated a few days later from the same healthcare facility, was confirmed infected with Lassa virus on 21 November. Comprehensive contact monitoring involving high- and low-risk contacts proved to be feasible and follow-up of the contacts did not reveal any case of secondary transmission in the Netherlands.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1062
Author(s):  
N’Faly Magassouba ◽  
Enogo Koivogui ◽  
Sory Conde ◽  
Moussa Kone ◽  
Michel Koropogui ◽  
...  

Lassa fever is a rodent-borne disease caused by Lassa virus (LASV). It causes fever, dizziness, vertigo, fatigue, coughing, diarrhea, internal bleeding and facial edema. The disease has been known in Guinea since 1960 but only anectodical acute cases have been reported to date. In January 2019, a 35-year-old man, a wood merchant from Kissidougou, Forest Guinea, presented himself at several health centers with persistent fever, frequent vomiting and joint pain. He was repeatedly treated for severe malaria, and died three weeks later in Mamou regional hospital. Differential diagnosis identified LASV as the cause of death. No secondary cases were reported. The complete LASV genome was obtained using next-generation sequencing. Phylogenetic analysis showed that this strain, namely the Kissidougou strain, belongs to the clade IV circulating in Guinea and Sierra Leone, and is thought to have emerged some 150 years ago. Due to the similarity of symptoms with malaria, Lassa fever is still a disease that is difficult to recognize and that may remain undiagnosed in health centers in Guinea.


2019 ◽  
Vol 93 (21) ◽  
Author(s):  
Deborah U. Ehichioya ◽  
Simon Dellicour ◽  
Meike Pahlmann ◽  
Toni Rieger ◽  
Lisa Oestereich ◽  
...  

ABSTRACT Lassa virus is genetically diverse with several lineages circulating in West Africa. This study aimed at describing the sequence variability of Lassa virus across Nigeria and inferring its spatiotemporal evolution. We sequenced and isolated 77 Lassa virus strains from 16 Nigerian states. The final data set, including previous works, comprised metadata and sequences of 219 unique strains sampled between 1969 and 2018 in 22 states. Most of this data originated from Lassa fever patients diagnosed at Irrua Specialist Teaching Hospital, Edo State, Nigeria. The majority of sequences clustered with the main Nigerian lineages II and III, while a few sequences formed a new cluster related to Lassa virus strains from Hylomyscus pamfi. Within lineages II and III, seven and five sublineages, respectively, were distinguishable. Phylogeographic analysis suggests an origin of lineage II in the southeastern part of the country around Ebonyi State and a main vector of dispersal toward the west across the Niger River, through Anambra, Kogi, Delta, and Edo into Ondo State. The frontline of virus dispersal appears to be in Ondo. Minor vectors are directed northeast toward Taraba and Adamawa and south toward Imo and Rivers. Lineage III might have spread from northern Plateau State into Kaduna, Nasarawa, Federal Capital Territory, and Bauchi. One sublineage moved south and crossed the Benue River into Benue State. This study provides a geographic mapping of lineages and phylogenetic clusters in Nigeria at a higher resolution. In addition, we estimated the direction and time frame of virus dispersal in the country. IMPORTANCE Lassa virus is the causative agent of Lassa fever, a viral hemorrhagic fever with a case fatality rate of approximately 30% in Africa. Previous studies disclosed a geographical pattern in the distribution of Lassa virus strains and a westward movement of the virus across West Africa during evolution. Our study provides a deeper understanding of the geography of genetic lineages and sublineages of the virus in Nigeria. In addition, we modeled how the virus spread in the country. This knowledge allows us to predict into which geographical areas the virus might spread in the future and prioritize areas for Lassa fever surveillance. Our study not only aimed to generate Lassa virus sequences from across Nigeria but also to isolate and conserve the respective viruses for future research. Both isolates and sequences are important for the development and evaluation of medical countermeasures to treat and prevent Lassa fever, such as diagnostics, therapeutics, and vaccines.


mBio ◽  
2016 ◽  
Vol 7 (6) ◽  
Author(s):  
Punya Shrivastava-Ranjan ◽  
Éric Bergeron ◽  
Ayan K. Chakrabarti ◽  
César G. Albariño ◽  
Mike Flint ◽  
...  

ABSTRACT Lassa virus (LASV) infection is a major public health concern due to high fatality rates and limited effective treatment. The interferon-stimulated gene cholesterol 25-hydroxylase ( CH25H ) encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC). 25HC is involved in regulating cholesterol biosynthesis and has recently been identified as a potent antiviral targeting enveloped virus entry. Here, we show a previously unrecognized role of CH25H in inhibiting LASV glycoprotein glycosylation and the production of infectious virus. Overexpression of CH25H or treatment with 25HC decreased LASV G1 glycoprotein N -glycan maturation and reduced the production of infectious LASV. Depletion of endogenous CH25H using small interfering RNA (siRNA) enhanced the levels of fully glycosylated G1 and increased infectious LASV production. Finally, LASV particles produced from 25HC-treated cells were found to be less infectious, to incorporate aberrantly glycosylated GP1 species, and to be defective in binding alpha-dystroglycan, an attachment and entry receptor. Our findings identify a novel role for CH25H in controlling LASV propagation and indicate that manipulation of the expression of CH25H or the administration of 25HC may be a useful anti-LASV therapy. IMPORTANCE Lassa fever is an acute viral hemorrhagic fever in humans caused by Lassa virus (LASV). No vaccine for LASV is currently available. Treatment is limited to the administration of ribavirin, which is only effective when given early in the course of illness. Cholesterol 25-hydroxylase ( CH25H ) is a recently identified interferon-stimulated gene (ISG); it encodes an enzyme that catalyzes the production of 25-hydroxycholesterol (25HC), which inhibits several viruses. Here, we identify a novel antiviral mechanism of 25HC that is dependent on inhibiting the glycosylation of Lassa virus (LASV) glycoprotein and reducing the infectivity of LASV as a means of suppressing viral replication. Since N-linked glycosylation is a critical feature of other enveloped-virus glycoproteins, 25HC may be a broad inhibitor of virus infectivity.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Nicolas Baillet ◽  
Stéphanie Reynard ◽  
Emeline Perthame ◽  
Jimmy Hortion ◽  
Alexandra Journeaux ◽  
...  

AbstractLassa virus (LASV) is endemic in West Africa and induces a viral hemorrhagic fever (VHF) with up to 30% lethality among clinical cases. The mechanisms involved in control of Lassa fever or, in contrast, the ensuing catastrophic illness and death are poorly understood. We used the cynomolgus monkey model to reproduce the human disease with asymptomatic to mild or fatal disease. After initial replication at the inoculation site, LASV reached the secondary lymphoid organs. LASV did not spread further in nonfatal disease and was rapidly controlled by balanced innate and T-cell responses. Systemic viral dissemination occurred during severe disease. Massive replication, a cytokine/chemokine storm, defective T-cell responses, and multiorgan failure were observed. Clinical, biological, immunological, and transcriptomic parameters resembled those observed during septic-shock syndrome, suggesting that similar pathogenesis is induced during Lassa fever. The outcome appears to be determined early, as differentially expressed genes in PBMCs were associated with fatal and non-fatal Lassa fever outcome very early after infection. These results provide a full characterization and important insights into Lassa fever pathogenesis and could help to develop early diagnostic tools.


2021 ◽  
Vol 9 (3) ◽  
pp. 564
Author(s):  
Mehmet Sahin ◽  
Melissa M. Remy ◽  
Doron Merkler ◽  
Daniel D. Pinschewer

Arenaviruses such as Lassa virus cause arenavirus hemorrhagic fever (AVHF), but protective vaccines and effective antiviral therapy remain unmet medical needs. Our prior work has revealed that inducible nitric oxide synthase (iNOS) induction by IFN-γ represents a key pathway to microvascular leak and terminal shock in AVHF. Here we hypothesized that Ruxolitinib, an FDA-approved JAK inhibitor known to prevent IFN-γ signaling, could be repurposed for host-directed therapy in AVHF. We tested the efficacy of Ruxolitinib in MHC-humanized (HHD) mice, which develop Lassa fever-like disease upon infection with the monkey-pathogenic lymphocytic choriomeningitis virus strain WE. Anti-TNF antibody therapy was tested as an alternative strategy owing to its expected effect on macrophage activation. Ruxolitinib but not anti-TNF antibody prevented hypothermia and terminal disease as well as pleural effusions and skin edema, which served as readouts of microvascular leak. As expected, neither treatment influenced viral loads. Intriguingly, however, and despite its potent disease-modifying activity, Ruxolitinib did not measurably interfere with iNOS expression or systemic NO metabolite levels. These findings suggest that the FDA-approved JAK-inhibitor Ruxolitinib has potential in the treatment of AVHF. Moreover, our observations indicate that besides IFN-γ-induced iNOS additional druggable pathways contribute essentially to AVHF and are amenable to host-directed therapy.


2021 ◽  
Author(s):  
Raphaëlle Klitting ◽  
Liana E. Kafetzopoulou ◽  
Wim Thiery ◽  
Gytis Dudas ◽  
Sophie Gryseels ◽  
...  

AbstractLassa fever is listed among the diseases that pose the greatest risks to public health by the World Health Organization. This severe viral hemorrhagic fever is caused by Lassa virus, a zoonotic pathogen that repeatedly spills over to humans from its rodent reservoirs. It is currently not known how climate change, transformations in land use, and human population growth could affect the endemic area of this virus, currently limited to parts of West Africa. By exploring the environmental data associated with virus occurrence, we show how temperature, precipitation and the presence of pastures determine ecological suitability for virus circulation. We project that regions in Central and East Africa will likely become suitable for Lassa virus over the next decades and estimate that the total population living in areas suitable for Lassa virus may grow from about 100 million to 700 million by 2070. By analysing geotagged viral genomes, we find that in the event of Lassa virus being introduced into a new suitable region, its spread might remain spatially limited over the first decades. Our results highlight how the endemic area of Lassa virus may expand well beyond West Africa in the next decades due to human impact on the environment, putting hundreds of million more people at risk of infection.


Sign in / Sign up

Export Citation Format

Share Document