scholarly journals Antibodies from Sierra Leonean and Nigerian Lassa fever survivors cross-react with recombinant proteins representing Lassa viruses of divergent lineages

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Megan L. Heinrich ◽  
Matthew L. Boisen ◽  
Diana K. S. Nelson ◽  
Duane J. Bush ◽  
Robert W. Cross ◽  
...  

Abstract Lassa virus (LASV) is the causative agent of Lassa fever, an often-fatal hemorrhagic disease that is endemic in West Africa. Seven genetically distinct LASV lineages have been identified. As part of CEPI’s (Coalition for Epidemic Preparedness Innovations) Lassa vaccine development program, we assessed the potential of the human immune system to mount cross-reactive and cross-protective humoral immune responses to antigens from the most prevalent LASV lineages, which are lineages II and III in Nigeria and lineage IV in Sierra Leone. IgG and IgM present in the blood of Lassa fever survivors from Nigeria or Sierra Leone exhibited substantial cross-reactivity for binding to LASV nucleoprotein and two engineered (linked and prefusion) versions of the glycoproteins (GP) of lineages II–IV. There was less cross-reactivity for the Zinc protein. Serum or plasma from Nigerian Lassa fever survivors neutralized LASV pseudoviruses expressing lineage II GP better than they neutralized lineage III or IV GP expressing pseudoviruses. Sierra Leonean survivors did not exhibit a lineage bias. Neutralization titres determined using LASV pseudovirus assays showed significant correlation with titres determined by plaque reduction with infectious LASV. These studies provide guidance for comparison of humoral immunity to LASV of distinct lineages following natural infection or immunization.

Biology ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 28
Author(s):  
Umaru Bangura ◽  
Jacob Buanie ◽  
Joyce Lamin ◽  
Christopher Davis ◽  
Gédéon Ngiala Bongo ◽  
...  

Lassa fever is a viral hemorrhagic fever caused by the Lassa virus LASV, which was first isolated in the rodent Mastomys natalensis in 1974 in Kenema, Sierra Leone. As little is known about the abundance and the presence of LASV in rodents living in the Bo area, we carried out a small mammal longitudinal population survey. A standardized trapping session was performed in various habitats and seasons in six villages over two years (2014–2016) and samples collected were tested for arenavirus IgG and LASV. A Bayesian phylogenetic analysis was performed on sequences identified by PCR. A total of 1490 small mammals were collected, and 16 rodent species were identified, with M. natalensis (355, 24%) found to be the most prevalent species. Forty-one (2.8%) samples were IgG positive, and 31 of these were trapped in homes and 10 in surrounding vegetation. Twenty-nine of 41 seropositive rodents were M. natalensis. We detected four LASV by PCR in two villages, all found in M. natalensis. Phylogenetic analysis showed that the sequences were distributed within the Sierra Leonean clade within lineage IV, distinguishing a Bo sub-clade older than a Kenema sub-clade. Compared to other settings, we found a low abundance of M. natalensis and a low circulation of LASV in rodents in villages around Bo district.


Pathogens ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 9 ◽  
Author(s):  
Dylan Johnson ◽  
Jenny Jokinen ◽  
Igor Lukashevich

Lassa virus (LASV), a highly prevalent mammalian arenavirus endemic in West Africa, can cause Lassa fever (LF), which is responsible for thousands of deaths annually. LASV is transmitted to humans from naturally infected rodents. At present, there is not an effective vaccine nor treatment. The genetic diversity of LASV is the greatest challenge for vaccine development. The reassortant ML29 carrying the L segment from the nonpathogenic Mopeia virus (MOPV) and the S segment from LASV is a vaccine candidate under current development. ML29 demonstrated complete protection in validated animal models against a Nigerian strain from clade II, which was responsible for the worst outbreak on record in 2018. This study demonstrated that ML29 was more attenuated than MOPV in STAT1-/- mice, a small animal model of human LF and its sequelae. ML29 infection of these mice resulted in more than a thousand-fold reduction in viremia and viral load in tissues and strong LASV-specific adaptive T cell responses compared to MOPV-infected mice. Persistent infection of Vero cells with ML29 resulted in generation of interfering particles (IPs), which strongly interfered with the replication of LASV, MOPV and LCMV, the prototype of the Arenaviridae. ML29 IPs induced potent cell-mediated immunity and were fully attenuated in STAT1-/- mice. Formulation of ML29 with IPs will improve the breadth of the host’s immune responses and further contribute to development of a pan-LASV vaccine with full coverage meeting the WHO requirements.


2020 ◽  
Vol 94 (12) ◽  
Author(s):  
Saori Sakabe ◽  
Jessica N. Hartnett ◽  
Nhi Ngo ◽  
Augustine Goba ◽  
Mambu Momoh ◽  
...  

ABSTRACT Early and robust T cell responses have been associated with survival from Lassa fever (LF), but the Lassa virus-specific memory responses have not been well characterized. Regions within the virus surface glycoprotein (GPC) and nucleoprotein (NP) are the main targets of the Lassa virus-specific T cell responses, but, to date, only a few T cell epitopes within these proteins have been identified. We identified GPC and NP regions containing T cell epitopes and HLA haplotypes from LF survivors and used predictive HLA-binding algorithms to identify putative epitopes, which were then experimentally tested using autologous survivor samples. We identified 12 CD8-positive (CD8+) T cell epitopes, including epitopes common to both Nigerian and Sierra Leonean survivors. These data should be useful for the identification of dominant Lassa virus-specific T cell responses in Lassa fever survivors and vaccinated individuals as well as for designing vaccines that elicit cell-mediated immunity. IMPORTANCE The high morbidity and mortality associated with clinical cases of Lassa fever, together with the lack of licensed vaccines and limited and partially effective interventions, make Lassa virus (LASV) an important health concern in its regions of endemicity in West Africa. Previous infection with LASV protects from disease after subsequent exposure, providing a framework for designing vaccines to elicit similar protective immunity. Multiple major lineages of LASV circulate in West Africa, and therefore, ideal vaccine candidates should elicit immunity to all lineages. We therefore sought to identify common T cell epitopes between Lassa fever survivors from Sierra Leone and Nigeria, where distinct lineages circulate. We identified three such epitopes derived from highly conserved regions within LASV proteins. In this process, we also identified nine other T cell epitopes. These data should help in the design of an effective pan-LASV vaccine.


2020 ◽  
Vol 25 (15) ◽  
Author(s):  
Femke Overbosch ◽  
Mark de Boer ◽  
Karin Ellen Veldkamp ◽  
Pauline Ellerbroek ◽  
Chantal P Bleeker-Rovers ◽  
...  

On 20 November 2019, Lassa fever was diagnosed in a physician repatriated from Sierra Leone to the Netherlands. A second physician with suspected Lassa fever, repatriated a few days later from the same healthcare facility, was confirmed infected with Lassa virus on 21 November. Comprehensive contact monitoring involving high- and low-risk contacts proved to be feasible and follow-up of the contacts did not reveal any case of secondary transmission in the Netherlands.


Viruses ◽  
2020 ◽  
Vol 12 (10) ◽  
pp. 1062
Author(s):  
N’Faly Magassouba ◽  
Enogo Koivogui ◽  
Sory Conde ◽  
Moussa Kone ◽  
Michel Koropogui ◽  
...  

Lassa fever is a rodent-borne disease caused by Lassa virus (LASV). It causes fever, dizziness, vertigo, fatigue, coughing, diarrhea, internal bleeding and facial edema. The disease has been known in Guinea since 1960 but only anectodical acute cases have been reported to date. In January 2019, a 35-year-old man, a wood merchant from Kissidougou, Forest Guinea, presented himself at several health centers with persistent fever, frequent vomiting and joint pain. He was repeatedly treated for severe malaria, and died three weeks later in Mamou regional hospital. Differential diagnosis identified LASV as the cause of death. No secondary cases were reported. The complete LASV genome was obtained using next-generation sequencing. Phylogenetic analysis showed that this strain, namely the Kissidougou strain, belongs to the clade IV circulating in Guinea and Sierra Leone, and is thought to have emerged some 150 years ago. Due to the similarity of symptoms with malaria, Lassa fever is still a disease that is difficult to recognize and that may remain undiagnosed in health centers in Guinea.


2019 ◽  
Vol 4 (Suppl 2) ◽  
pp. e001119 ◽  
Author(s):  
Devy M Emperador ◽  
Solomon A Yimer ◽  
Laura T Mazzola ◽  
Gunnstein Norheim ◽  
Cassandra Kelly-Cirino

Lassa fever, caused by arenavirus Lassa virus (LASV), is an acute viral haemorrhagic disease that affects up to an estimated 300 000 individuals and causes up to 5000 deaths per year in West Africa. Currently available LASV diagnostic methods are difficult to operationalise in low-resource health centres and may be less sensitive to detecting all known or emerging LASV strains. To prioritise diagnostic development for LASV, we assessed the diagnostic applications for case detection, clinical management, surveillance, outbreak response, and therapeutic and vaccine development at various healthcare levels. Diagnostic development should prioritise point-of-care and near-patient diagnostics, especially those with the ability to detect all lineages of LASV, as they would allow for rapid detection in resource-limited health facilities closer to the patient.


mSphere ◽  
2019 ◽  
Vol 4 (5) ◽  
Author(s):  
Junki Maruyama ◽  
John T. Manning ◽  
Elizabeth J. Mateer ◽  
Rachel Sattler ◽  
Natalya Bukreyeva ◽  
...  

ABSTRACT Lassa virus (LASV), a member of the family Arenaviridae, is the causative agent of Lassa fever. Lassa virus is endemic in West African countries, such as Nigeria, Guinea, Liberia, and Sierra Leone, and causes outbreaks annually. Lassa fever onset begins with “flu-like” symptoms and may develop into lethal hemorrhagic disease in severe cases. Although Lassa virus is one of the most alarming pathogens from a public health perspective, there are few licensed vaccines or therapeutics against Lassa fever. The fact that animal models are limited and the fact that mostly laboratory-derived viruses are used for studies limit the successful development of countermeasures. In this study, we demonstrated that the LASV isolate LF2384-NS-DIA-1 (LF2384), which was directly isolated from a serum sample from a fatal human Lassa fever case in the 2012 Sierra Leone outbreak, causes uniformly lethal infection in outbred Hartley guinea pigs without virus-host adaptation. This is the first report of a clinically isolated strain of LASV causing lethal infection in outbred guinea pigs. This novel guinea pig model of Lassa fever may contribute to Lassa fever research and the development of vaccines and therapeutics. IMPORTANCE Lassa virus, the causative agent of Lassa fever, is a zoonotic pathogen causing annual outbreaks in West African countries. Human patients can develop lethal hemorrhagic fever in severe cases. Although Lassa virus is one of the most alarming pathogens from a public health perspective, there are few available countermeasures, such as antiviral drugs or vaccines. Moreover, the fact that animal models are not readily accessible and the fact that mostly laboratory viruses, which have been passaged many times after isolation, are used for studies further limits the successful development of countermeasures. In this study, we demonstrate that a human isolate of Lassa virus causes lethal infection uniformly in Hartley guinea pigs. This novel animal model of Lassa fever may contribute to Lassa fever research and the development of vaccines and therapeutics.


2021 ◽  
Vol 9 (3) ◽  
pp. 586
Author(s):  
Jeffrey Shaffer ◽  
John Schieffelin ◽  
Mambu Momoh ◽  
Augustine Goba ◽  
Lansana Kanneh ◽  
...  

Lassa fever (LF) is a viral hemorrhagic disease found in Sub-Saharan Africa and is responsible for up to 300,000 cases and 5000 deaths annually. LF is highly endemic in Sierra Leone, particularly in its Eastern Province. Kenema Government Hospital (KGH) maintains one of only a few LF isolation facilities in the world with year-round diagnostic testing. Here we focus on space-time trends for LF occurring in Sierra Leone between 2012 and 2019 to provide a current account of LF in the wake of the 2014–2016 Ebola epidemic. Data were analyzed for 3277 suspected LF cases and classified as acute, recent, and non-LF or prior LF exposure using enzyme-linked immunosorbent assays (ELISAs). Presentation rates for acute, recent, and non-LF or prior LF exposure were 6.0% (195/3277), 25.6% (838/3277), and 68.4% (2244/3277), respectively. Among 2051 non-LF or prior LF exposures, 33.2% (682/2051) tested positive for convalescent LF exposure. The overall LF case-fatality rate (CFR) was 78.5% (106/135). Both clinical presentations and confirmed LF cases declined following the Ebola epidemic. These declines coincided with an increased duration between illness onset and clinical presentation, perhaps suggesting more severe disease or presentation at later stages of illness. Acute LF cases and their corresponding CFRs peaked during the dry season (November to April). Subjects with recent (but not acute) LF exposure were more likely to present during the rainy season (May to October) than the dry season (p < 0.001). The findings here suggest that LF remains endemic in Sierra Leone and that caseloads are likely to resume at levels observed prior to the Ebola epidemic. The results provide insight on the current epidemiological profile of LF in Sierra Leone to facilitate LF vaccine studies and accentuate the need for LF cohort studies and continued advancements in LF diagnostics.


Pathogens ◽  
2019 ◽  
Vol 8 (1) ◽  
pp. 17 ◽  
Author(s):  
María Loureiro ◽  
Alejandra D’Antuono ◽  
Nora López

Lassa virus (LASV) is the causative agent of Lassa fever, a human hemorrhagic disease associated with high mortality and morbidity rates, particularly prevalent in West Africa. Over the past few years, a significant amount of novel information has been provided on cellular factors that are determinant elements playing a role in arenavirus multiplication. In this review, we focus on host proteins that intersect with the initial steps of the LASV replication cycle: virus entry and genome replication. A better understanding of relevant virus–host interactions essential for sustaining these critical steps may help to identify possible targets for the rational design of novel therapeutic approaches against LASV and other arenaviruses that cause severe human disease.


2021 ◽  
Vol 66 (2) ◽  
pp. 91-102
Author(s):  
O. D. Popova ◽  
O. V. Zubkova ◽  
T. A. Ozharovskaia ◽  
D. I. Zrelkin ◽  
D. V. Voronina ◽  
...  

The Lassa virus one of the main etiological agent of hemorrhagic fevers in the world: according to WHO estimates, it affects 100,000 to 300,000 people annually, which results in up to 10,000 deaths [1]. Although expansion of Lassa fever caused by this pathogen is mostly limited to the West African countries: Sierra Leone, Liberia, Guinea and Nigeria, imported cases have been historically documented in Europe, the United States of America (USA), Canada, Japan, and Israel [2]. In 2017, WHO included the Lassa virus in the list of priority pathogens in need of accelerated research, development of vaccines, therapeutic agents and diagnostic tools regarding infections they cause [3]. This review describes main technological platforms used for the development of vaccines for the prevention of Lassa fever.


Sign in / Sign up

Export Citation Format

Share Document