scholarly journals Comparative Characterization of Gluten and Hydrolyzed Wheat Proteins

Biomolecules ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 1227
Author(s):  
Angelika Miriam Gabler ◽  
Katharina Anne Scherf

Hydrolyzed wheat proteins (HWPs) are widely used as functional ingredients in foods and cosmetics, because of their emulsifying and foaming properties. However, in individuals suffering from celiac disease or wheat allergy, HWPs may have a modified immunoreactivity compared to native gluten due to changes in molecular structures. Although a variety of HWPs are commercially available, there are no in-depth comparative studies that characterize the relative molecular mass (Mr) distribution, solubility, and hydrophilicity/hydrophobicity of HWPs compared to native gluten. Therefore, we aimed to fill this gap by studying the above characteristics of different commercial HWP and gluten samples. Up to 100% of the peptides/proteins in the HWP were soluble in aqueous solution, compared to about 3% in native gluten. Analysis of the Mr distribution indicated that HWPs contained high percentages of low-molecular-weight peptides/proteins and also deamidated glutamine residues. We also found considerable differences between the seven HWPs studied, so that each HWP needs to be studied in detail to help explain its potential immunoreactivity.

2018 ◽  
Vol 69 (7) ◽  
pp. 1756-1759 ◽  
Author(s):  
Luminita Confederat ◽  
Iuliana Motrescu ◽  
Sandra Constantin ◽  
Florentina Lupascu ◽  
Lenuta Profire

The aim of this study was to optimize the method used for obtaining microparticles based on chitosan � a biocompatible, biodegradable, and nontoxic polymer, and to characterize the developed systems. Chitosan microparticles, as drug delivery systems were obtained by inotropic gelation method using pentasodiumtripolyphosphate (TPP) as cross-linking agent. Chitosan with low molecular weight (CSLMW) in concentration which ranged between 0.5 and 5 %, was used while the concentration of cross-linking agent ranged between 1 and 5%. The characterization of the microparticles in terms of shape, uniformity and adhesion was performed in solution and dried state. The size of the microparticles and the degree of swelling were also determined. The structure and the morphology of the developed polymeric systems were analyzed by Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM).The average diameter of the chitosan microparticles was around 522 �m. The most stable microparticles were obtained using CSLMW 1% and TPP 2% or CSLMW 0.75%and TPP 1%. The micropaticles were spherical, uniform and without flattening. Using CSLMW in concentration of 0.5 % poorly cross-linked and crushed microparticles have been obtained at all TPP concentrations. By optimization of the method, stable chitosan-based micropaticles were obtained which will be used to develop controlled release systems for drug delivery.


1984 ◽  
Vol 49 (8) ◽  
pp. 1846-1853 ◽  
Author(s):  
Karel Hauzer ◽  
Tomislav Barth ◽  
Linda Servítová ◽  
Karel Jošt

A post-proline endopeptidase (EC 3.4.21.26) was isolated from pig kidneys using a modified method described earlier. The enzyme was further purified by ion exchange chromatography on DEAE-Sephacel. The final product contained about 95% of post-proline endopeptidase. The enzyme molecule consisted of one peptide chain with a relative molecular mass of 65 600 to 70 000, containing a large proportion of acidic and alifatic amino acids (glutamic acid, aspartic acid and leucine) and the N-terminus was formed by aspartic acid or asparagine. In order to prevent losses of enzyme activity, thiol compounds has to be added.


Biomolecules ◽  
2020 ◽  
Vol 10 (2) ◽  
pp. 216 ◽  
Author(s):  
Viviana Triaca ◽  
Elena Fico ◽  
Valentina Sposato ◽  
Silvia Caioli ◽  
Maria Teresa Ciotti ◽  
...  

In the last decade, Nerve Growth Factor (NGF)-based clinical approaches have lacked specific and efficient Tyrosine Kinase A (TrkA) agonists for brain delivery. Nowadays, the characterization of novel small peptidomimetic is taking centre stage in preclinical studies, in order to overcome the main size-related limitation in brain delivery of NGF holoprotein for Central Nervous System (CNS) pathologies. Here we investigated the NGF mimetic properties of the human NGF 1–14 sequence (hNGF1–14) and its derivatives, by resorting to primary cholinergic and dorsal root ganglia (DRG) neurons. Briefly, we observed that: 1) hNGF1–14 peptides engage the NGF pathway through TrkA phosphorylation at tyrosine 490 (Y490), and activation of ShcC/PI3K and Plc-γ/MAPK signalling, promoting AKT-dependent survival and CREB-driven neuronal activity, as seen by levels of the immediate early gene c-Fos, of the cholinergic marker Choline Acetyltransferase (ChAT), and of Brain Derived Neurotrophic Factor (BDNF); 2) their NGF mimetic activity is lost upon selective TrkA inhibition by means of GW441756; 3) hNGF1–14 peptides are able to sustain DRG survival and differentiation in absence of NGF. Furthermore, the acetylated derivative Ac-hNGF1–14 demonstrated an optimal NGF mimetic activity in both neuronal paradigms and an electrophysiological profile similar to NGF in cholinergic neurons. Cumulatively, the findings here reported pinpoint the hNGF1–14 peptide, and in particular its acetylated derivative, as novel, specific and low molecular weight TrkA specific agonists in both CNS and PNS primary neurons.


1965 ◽  
Vol 240 (7) ◽  
pp. 2868-2876 ◽  
Author(s):  
T. Ikenaka ◽  
D. Gitlin ◽  
K. Schmid

Sign in / Sign up

Export Citation Format

Share Document