scholarly journals Extraction and Chemical Characterization of Functional Phenols and Proteins from Coffee (Coffea arabica) By-Products

Biomolecules ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 1571
Author(s):  
Barbara Prandi ◽  
Maura Ferri ◽  
Stefania Monari ◽  
Chiara Zurlini ◽  
Ilaria Cigognini ◽  
...  

Not all the coffee produced goes to the roasting stage, because non-compliant green coffee beans are usually discarded by roasters and the silverskin of the coffee is usually removed and discarded. In the present work, non-compliant green coffee beans and coffee silverskins were fully characterized from a chemical point of view. In addition, enzyme-assisted extraction was applied to recover a fraction rich in proteins and polyphenols, tested for antimicrobial, antityrosinase, and antioxidant activities. Non-compliant green coffee beans showed higher amounts of polyphenols, flavanols, flavonoids, and caffeine than coffee silverskins (which were richer in tannins). The enzymatic extraction of non-compliant coffee green beans produced extracts with a good protein content and with a consistent quantity of polyphenols. The extract showed antioxidant, antityrosinase, and antimicrobial activity, thus representing a promising strategy to recover defective green coffee beans. The antioxidant and antimicrobial activity of coffee silver skins is lower than that of non-compliant coffee green beans extracts, while the antityrosinase activity is comparable.

2021 ◽  
pp. 130504
Author(s):  
Fareeya Kulapichitr ◽  
Chaleeda Borompichaichartkul ◽  
Mingchih Fang ◽  
Inthawoot Suppavorasatit ◽  
Keith R. Cadwallader

2021 ◽  
Vol 306 ◽  
pp. 03024
Author(s):  
Adnan ◽  
Martina Sri Lestari

Drying and sortation are the most important steps to improve green coffee beans and cup quality. However, farmers very often neglect these steps. Therefore, a simple technique and soft approach are required to encourage farmers to implement drying and sortation technology. The study aim is to assess suitable drying and sortation technology to improve green coffee beans and cup quality to local culture in Jayawijaya Regency, Papua. The study was conducted using 2 factors; a. Combination of drying floor using a tarp and without sortation (DFWTS), b. Combination of drying tables and with sortation (DTWS). Drying tables were designed as two separate parts. The first part was the permanent tables, and the second part was removable boxes in dimension 80 x 80 cm located on top of the permanent tables. Descriptive analysis was conducted based on SNI 01-2907-2008 by the Indonesian Coffee and Cocoa Research Institute. The results show DTWS produce green coffee beans in compliance with SNI 01-2907-2008 at 4a grade, compared to DFWTS is rejected. Green coffee beans quality is likely to affect cup quality. DTWS obtain cup quality score 83.0 compare to DFWTS is 81.25. In conclusion, DTWS improve green coffee beans and cup quality.


2020 ◽  
Vol 11 (1) ◽  
pp. 233-240 ◽  
Author(s):  
Bothiraj K V ◽  
Murugan ◽  
Vanitha V

All around the world, Coffee place an important position in the beverages. It contains phenolic acid as well as polyphenols. It has the property of antioxidant; mood enhances mood, and also increases alertness, reduces weight, efficiency against hypertension, and antitumor property because of its polyphenols and phenolic constituents. Chlorogenic acids (CGA) are the main components found in the fraction of phenols from green coffee beans. CGA has several therapeutic properties, which include antioxidant activities and also has hepatoprotective, hypoglycemic, and antiviral properties.  Several essential compounds found in CGA in green coffee beans are caffeoylquinic acids, caffeoylquinic acids, feruloyl quinic acids, p-coumaroylquinic acids, and quinic acid. Therefore, this review highlighted the health benefits and anticancer activities of Green coffee bean.


2019 ◽  
Vol 51 (2) ◽  
pp. 261-266
Author(s):  
S. B. Seo ◽  
Y. M. Kim

High ultrasonic-assisted extraction technology (INEFU) was employed to extract the active components from natural materials (green coffee beans, Citrus madurensis, Centella asiatica, Laminaria Japonica). The extraction conditions were optimized by a response surface method and Box-Behnken design. The active component yields were obtained under the optimum parameters: ultrasound power (1800 watts), ultrasonication time, and particle size. After INEFU of natural materials (green coffee beans, Citrus madurensis, Centella asiatica and Laminaria Japonica) the products were analyzed with high performance liquid chromatography (HPLC). HPLC analysis showed that the four natural materials were composed of different combinations of vitamin C, polyphenols, chlorogenic acid, caffein, caffeic acid, asiaticoside and alginic acid. In addition, the INEFU results showed that natural materials can yield more active components during a simulated extraction process.


Antioxidants ◽  
2020 ◽  
Vol 9 (5) ◽  
pp. 408
Author(s):  
Mesfin Haile ◽  
Hyung Min Bae ◽  
Won Hee Kang

There are different types of coffee processing methods. The wet (WP) and dry processing (DP) methods are widely practiced in different parts of coffee-growing countries. There is also a digestive bioprocessing method in which the most expensive coffee is produced. The elephant dung coffee is produced using the digestive bioprocessing method. In the present experiment, the antioxidant activity and volatile compounds of coffee that have been processed using different methods were compared. The antioxidant activity, total phenolic content (TPC), total flavonoid content (TFC), and total tannin content (TTC) of green coffee beans from all treatments were higher as compared to roasted coffee beans. Regarding the green coffee beans, the 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of elephant dung coffee beans was higher as compared to that of the DP and WP coffee beans. The green coffee beans had higher DPPH activity and ferric reducing antioxidant power (FRAP) value compared to the roasted coffee beans. The green beans of elephant dung coffee had a high TPC than the beans obtained by WP and DP methods. TFC in elephant dung coffee in both green and roasted condition was improved in contrast to the beans processed using dry and wet methods. The elephant dung coffee had an increased TTC in comparison to the DP and WP coffee (green beans). About 37 volatile compounds of acids, alcohols, aldehydes, amide, esters, ethers, furans, furanones, ketones, phenols, pyrazines, pyridines, Heterocyclic N, and pyrroles functional classes have been found. Some of the most abundant volatile compounds detected in all treatments of coffee were 2-furanmethanol, acetic acid, 2-methylpyrazine, 2,6-dimethylpyrazine, pyridine, and 5-methylfurfural. Few volatile compounds have been detected only in elephant dung coffee. The principal component analysis (PCAs) was performed using the percentage of relative peak areas of the volatile compound classes and individual volatile compounds. This study will provide a better understanding of the impacts of processing methods on the antioxidants and volatile compounds of coffee.


Sign in / Sign up

Export Citation Format

Share Document