scholarly journals Externalized Keratin 8: A Target at the Interface of Microenvironment and Intracellular Signaling in Colorectal Cancer Cells

Cancers ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 452 ◽  
Author(s):  
Marie Albaret ◽  
Claudine Vermot-Desroches ◽  
Arnaud Paré ◽  
Jean-Xavier Roca-Martinez ◽  
Lucie Malet ◽  
...  

Accumulating evidence supports the remarkable presence at the membrane surface of cancer cells of proteins, which are normally expressed in the intracellular compartment. Although these proteins, referred to as externalized proteins, represent a highly promising source of accessible and druggable targets for cancer therapy, the mechanisms via which they impact cancer biology remain largely unexplored. The aim of this study was to expose an externalized form of cytokeratin 8 (eK8) as a key player of colorectal tumorigenesis and characterize its mode of action. To achieve this, we generated a unique antagonist monoclonal antibody (D-A10 MAb) targeting an eight-amino-acid-long domain of eK8, which enabled us to ascertain the pro-tumoral activity of eK8 in both KRAS-mutant and wild-type colorectal cancers (CRC). We showed that this pro-tumoral activity involves a bidirectional eK8-dependent control of caspase-mediated apoptosis in vivo and of the plasminogen-induced invasion process in cellulo. Furthermore, we demonstrated that eK8 is anchored at the plasma membrane supporting this dual function. We, therefore, identified eK8 as an innovative therapeutic target in CRC and provided a unique MAb targeting eK8 that displays anti-neoplastic activities that could be useful to treat CRC, including those harboring KRAS mutations.

Metabolites ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 216
Author(s):  
Mio Harachi ◽  
Kenta Masui ◽  
Webster K. Cavenee ◽  
Paul S. Mischel ◽  
Noriyuki Shibata

Metabolic reprogramming is an emerging hallmark of cancer and is driven by abnormalities of oncogenes and tumor suppressors. Accelerated metabolism causes cancer cell aggression through the dysregulation of rate-limiting metabolic enzymes as well as by facilitating the production of intermediary metabolites. However, the mechanisms by which a shift in the metabolic landscape reshapes the intracellular signaling to promote the survival of cancer cells remain to be clarified. Recent high-resolution mass spectrometry-based proteomic analyses have spotlighted that, unexpectedly, lysine residues of numerous cytosolic as well as nuclear proteins are acetylated and that this modification modulates protein activity, sublocalization and stability, with profound impact on cellular function. More importantly, cancer cells exploit acetylation as a post-translational protein for microenvironmental adaptation, nominating it as a means for dynamic modulation of the phenotypes of cancer cells at the interface between genetics and environments. The objectives of this review were to describe the functional implications of protein lysine acetylation in cancer biology by examining recent evidence that implicates oncogenic signaling as a strong driver of protein acetylation, which might be exploitable for novel therapeutic strategies against cancer.


Author(s):  
Changhong Li ◽  
Kui Zhang ◽  
Guangzhao Pan ◽  
Haoyan Ji ◽  
Chongyang Li ◽  
...  

Abstract Background Dehydrodiisoeugenol (DEH), a novel lignan component extracted from nutmeg, which is the seed of Myristica fragrans Houtt, displays noticeable anti-inflammatory and anti-allergic effects in digestive system diseases. However, the mechanism of its anticancer activity in gastrointestinal cancer remains to be investigated. Methods In this study, the anticancer effect of DEH on human colorectal cancer and its underlying mechanism were evaluated. Assays including MTT, EdU, Plate clone formation, Soft agar, Flow cytometry, Electron microscopy, Immunofluorescence and Western blotting were used in vitro. The CDX and PDX tumor xenograft models were used in vivo. Results Our findings indicated that treatment with DEH arrested the cell cycle of colorectal cancer cells at the G1/S phase, leading to significant inhibition in cell growth. Moreover, DEH induced strong cellular autophagy, which could be inhibited through autophagic inhibitors, with a rction in the DEH-induced inhibition of cell growth in colorectal cancer cells. Further analysis indicated that DEH also induced endoplasmic reticulum (ER) stress and subsequently stimulated autophagy through the activation of PERK/eIF2α and IRE1α/XBP-1 s/CHOP pathways. Knockdown of PERK or IRE1α significantly decreased DEH-induced autophagy and retrieved cell viability in cells treated with DEH. Furthermore, DEH also exhibited significant anticancer activities in the CDX- and PDX-models. Conclusions Collectively, our studies strongly suggest that DEH might be a potential anticancer agent against colorectal cancer by activating ER stress-induced inhibition of autophagy.


Cancers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 172
Author(s):  
Izabela Papiewska-Pająk ◽  
Patrycja Przygodzka ◽  
Damian Krzyżanowski ◽  
Kamila Soboska ◽  
Izabela Szulc-Kiełbik ◽  
...  

During metastasis, cancer cells undergo phenotype changes in the epithelial-mesenchymal transition (EMT) process. Extracellular vesicles (EVs) released by cancer cells are the mediators of intercellular communication and play a role in metastatic process. Knowledge of factors that influence the modifications of the pre-metastatic niche for the migrating carcinoma cells is important for prevention of metastasis. We focus here on how cancer progression is affected by EVs released from either epithelial-like HT29-cells or from cells that are in early EMT stage triggered by Snail transcription factor (HT29-Snail). We found that EVs released from HT29-Snail, as compared to HT29-pcDNA cells, have a different microRNA profile. We observed the presence of interstitial pneumonias in the lungs of mice injected with HT29-Snail cells and the percent of mice with lung inflammation was higher after injection of HT29-Snail-EVs. Incorporation of EVs released from HT29-pcDNA, but not released from HT29-Snail, leads to the increased secretion of IL-8 from macrophages. We conclude that Snail modifications of CRC cells towards more invasive phenotype also alter the microRNA cargo of released EVs. The content of cell-released EVs may serve as a biomarker that denotes the stage of CRC and EVs-specific microRNAs may be a target to prevent cancer progression.


2013 ◽  
Vol 86 (3) ◽  
pp. 469-476 ◽  
Author(s):  
Joseph W. Shelton ◽  
Timothy V. Waxweiler ◽  
Jerome Landry ◽  
Huiying Gao ◽  
Yanbo Xu ◽  
...  

2020 ◽  
Vol 11 ◽  
Author(s):  
Macarena A. Varas ◽  
Carlos Muñoz-Montecinos ◽  
Violeta Kallens ◽  
Valeska Simon ◽  
Miguel L. Allende ◽  
...  

2010 ◽  
Vol 649 (1-3) ◽  
pp. 120-126 ◽  
Author(s):  
Anning Yin ◽  
Yingan Jiang ◽  
Xianfeng Zhang ◽  
Juan Zhao ◽  
Hesheng Luo

2007 ◽  
Vol 35 (4) ◽  
pp. 450-457 ◽  
Author(s):  
K Kimura ◽  
T Nagasaka ◽  
N Hoshizima ◽  
H Sasamoto ◽  
K Notohara ◽  
...  

Codon 12 and 13 mutations in 170 colorectal cancer (CRC) and 66 gastric cancer (GC) specimens were analysed by an ‘enriched’ polymerase chain reaction–restriction fragment length polymorphism (PCR–RFLP) method. All identified mutations were verified by direct sequencing of the second PCR products. Among the 170 CRC specimens, mutations were identified in 47 (28%) and 13 (7.6%) cases in codons 12 and 13, respectively. In the 66 GC specimens examined, however, mutations in codons 12 and 13 were only detected in two (3.0%) and one (1.5%) cases, respectively. Mutations in both codon 12 and 13 were found in 3/170 (1.8%) CRCs and 1/66 (1.5%) GCs. Duplicate mutations were never identified in the same allele, which was confirmed by direct sequencing of the second amplified products. The majority of colorectal and gastric cancer cells with KRAS mutations are homogeneous because they have the same KRAS mutation. A few colorectal or gastric cancers, however, showed heterogeneity, as verified by the fact that single mutations were identified in the same allele.


2017 ◽  
Vol 13 (6) ◽  
pp. 4762-4768 ◽  
Author(s):  
Ying Wang ◽  
Shoujun Yuan ◽  
Linna Li ◽  
Dexuan Yang ◽  
Chengwang Xu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document