Electrocatalytic Properties of Co Nanoconical Structured Electrodes Produced by a One-Step or Two-Step Method
One-dimensional (1D) nanostructures, such as nanotubes, nanopores, nanodots and nanocones, are characterized by better catalytic properties than bulk material due to their large active surface area and small geometrical size. These structures can be produced by several methods of synthesis including the one- and two-step methods. In the one-step method, a crystal modifier is added to the solution in order to limit the horizontal direction of structures growing during electrodeposition. In this work, NH4Cl was used as a crystal modifier. Another way of production of 1D nanocones is the electrodeposition of metal in porous anodic alumina oxide (AAO) templates, called the two-step method. In this case, the AAO template was obtained using a two-step anodization process. Nanocones obtained by the two-step method show smaller geometrical size. In this work, cobalt nanoconical structures were obtained from an electrolyte containing CoCl2 and H3BO3. The electrocatalytic properties of materials fabricated by one-step and two-step methods were measured in 1 M NaOH and compared with bulk material electrodeposited from the same electrolyte. There were several microshell structures in the case of Co deposits obtained by the one-step method. To solve this problem, different conditions of synthesis Co cones by the one-step method were applied. The electrocatalytic activity of these samples was checked as well.