geometrical size
Recently Published Documents


TOTAL DOCUMENTS

67
(FIVE YEARS 15)

H-INDEX

13
(FIVE YEARS 1)

2021 ◽  
Vol 27 (3) ◽  
pp. 213-222
Author(s):  
Winda Kusuma Dewi ◽  
Choirul Anam ◽  
Eko Hidayanto ◽  
Arrum Nitasari ◽  
Geoff Dougherty

Abstract Purpose: The aim of this work was to establish the relationships of patient size in terms of effective diameter (Deff) and water-equivalent diameter (Dw) with lateral (LAT) and anterior-posterior (AP) dimensions in order to predict the specific patient dose for thoracic, abdominal, and pelvic computed tomography (CT) examinations. Methods: A total of 47 thoracic images, 79 abdominal images, and 50 pelvic images were analyzed in this study. The patient’s images were retrospectively collected from Dr. Kariadi and Kensaras Hospitals, Semarang, Indonesia. The slices measured were taken from the middle of the scan range. The calculations of patient sizes (LAT, AP, Deff, and Dw) were automatically performed by IndoseCT 20b software. Deff and Dw were plotted as functions of LAT, AP, and AP+LAT. In addition, Dw was plotted as a function of Deff. Results: Strong correlations of Deff and Dw with LAT, AP, and AP+LAT were found. Stronger correlations were found in the Deff curves (R2 > 0.9) than in the Dw curves (R2 > 0.8). It was found that the average Deff was higher than the average Dw in the thoracic region, the average values were similar in the abdominal and pelvic regions. Conclusion: The current study extended the study of the relationships between Deff and Dw and the basic geometric diameter LAT, AP, and AP+LAT beyond those previously reported by AAPM. We evaluated the relationships for three regions, i.e. thoracic, abdominal, and pelvic regions. Based on our findings, it was possible to estimate Deff and Dw from only the LAT or AP dimension.


Catalysts ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 544
Author(s):  
Katarzyna Skibinska ◽  
Karolina Kolczyk-Siedlecka ◽  
Dawid Kutyla ◽  
Anna Jedraczka ◽  
Beata Leszczyńska-Madej ◽  
...  

One-dimensional (1D) nanostructures, such as nanotubes, nanopores, nanodots and nanocones, are characterized by better catalytic properties than bulk material due to their large active surface area and small geometrical size. These structures can be produced by several methods of synthesis including the one- and two-step methods. In the one-step method, a crystal modifier is added to the solution in order to limit the horizontal direction of structures growing during electrodeposition. In this work, NH4Cl was used as a crystal modifier. Another way of production of 1D nanocones is the electrodeposition of metal in porous anodic alumina oxide (AAO) templates, called the two-step method. In this case, the AAO template was obtained using a two-step anodization process. Nanocones obtained by the two-step method show smaller geometrical size. In this work, cobalt nanoconical structures were obtained from an electrolyte containing CoCl2 and H3BO3. The electrocatalytic properties of materials fabricated by one-step and two-step methods were measured in 1 M NaOH and compared with bulk material electrodeposited from the same electrolyte. There were several microshell structures in the case of Co deposits obtained by the one-step method. To solve this problem, different conditions of synthesis Co cones by the one-step method were applied. The electrocatalytic activity of these samples was checked as well.


2021 ◽  
Vol 25 (3-4) ◽  
pp. 5-12
Author(s):  
Konstanty Skalski ◽  
Ryszard Filipowski

The paper presents the scopes of examination of the cancellous bone, 3D CAD design of scaffolds of the cancellous bone and their creation with a laser beam in SLM incremental technology. The geometrical size of the scaffold and the material feature corresponding to the Young's modulus are the parameters describing the porous structure of the cancellous bone. In the statistical analysis, these values are defined as independent variables. The physical properties of the scaffold are defined by the strength parameters determined by hardness (e.g. HIT, HM, HV and are dependent variables). The REGMULT multiple regression program was used to develop the research results. However, to optimize the porous structure of the scaffold, the single-criteria optimization program SYEQL3 was used.


2021 ◽  
Vol 1739 ◽  
pp. 012042
Author(s):  
Jiaxu Chen ◽  
Yonghua Lu ◽  
Jie Tan ◽  
Zhibin Ye ◽  
Huayu Zhu
Keyword(s):  

2020 ◽  
Vol 2 (1) ◽  
pp. 12
Author(s):  
Katarzyna Skibinska ◽  
Karolina Kolczyk-Siedlecka ◽  
Dawid Kutyla ◽  
Anna Jedraczka ◽  
Piotr Zabinski

One-dimensional (1D) nanostructures, such as nanotubes, nanopores, nanodots and nanocones, are characterized by better catalytic properties than bulk materials due to their large active surface area and small geometrical size. There are several methods of synthesis for these structures, including the one- and two-step methods. In the one-step method, a crystal modifier is added to the solution in order to limit the horizontal direction of structures growing during electrodeposition. In this work, cobalt nanoconical structures were obtained from an electrolyte containing CoCl2, H3BO3 and NH4Cl as the crystal modifier. Another method of production of 1D nanocones is electrodeposition of the metal into porous anodic alumina oxide (AAO) templates. This method is called the two-step method. In this case, an AAO template was obtained using two-step anodization. Then, electrodeposition of cobalt was performed from an electrolyte containing CoSO4 and H3BO3. Nanocones obtained by the two-step method show smaller geometrical size. The bulk sample was electrodeposited from the same electrolyte. The electrocatalytic properties of materials fabricated by the one-step and two-step methods were measured in 1M NaOH and compared with bulk materials. Co cones obtained by the one-step method show the worst electrocatalytic properties. The hydrogen evolution reaction started the earliest for Co nanocones electrodeposited in the templates.


Author(s):  
Mohanad H. Aljanabi ◽  
Ahmed Hussein Duhis ◽  
Ahmed Obaid Aftan ◽  
Nadia Alanı

<p>In this study, we focus on plasmonic nanoantenna structures for the U shaped. We will do our simulations with FDTD method (finite difference time domain) by considering commercial software Lumerical. We use U-shaped and play with the geometrical parameters such as length (L), width (W), high (H), to enhance the transmission of light. In addition to this, we will consider the different methods and substrates. U-shaped designed structure by using gold and<strong> </strong>MgF2 materials and studied how to enhance nanoantenna coefficients to get the highest electric field improvement factor and support multi-spectral resonances, that can be tuned from visible to near-IR wavelengths. For the optimum coefficients, the proposed U-shaped nanoantenna reached the optimal transmission and multi-resonant for different geometrical size. In results shows that in this model are wideband range of wavelengths and optimal transmission and all physical boundary conditions are chosen as perfectly matched layer (PML) to avoid undesired reflections, when we change the size of U-shaped with different materials is used and gets more proposes in the biosensors, biomedical and laser optical communication and for nanoantennas can also be deposited on layered substrates to enable solar cells and energy harvesting applications .And we can see that there are two resonances at (𝝺<sub>1 </sub>and 𝝺<sub>2</sub>) wavelength range (500-950) nm, the first one has a transmission 0.73 at wavelength 700nm; and the other one has a transmission 0.88 at wavelength 845nm from this designed. We will investigate the structure of nanoantenna to be used as biosensors.</p><p> </p>


Sign in / Sign up

Export Citation Format

Share Document