scholarly journals Single-Cell Transcriptomics Reveals Core Regulatory Programs that Determine the Heterogeneity of Circulating and Tissue-Resident Memory CD8+ T Cells

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2143
Author(s):  
Yao Chen ◽  
Jian Shen ◽  
Moujtaba Y. Kasmani ◽  
Paytsar Topchyan ◽  
Weiguo Cui

During acute infections, CD8+ T cells form various memory subpopulations to provide long-lasting protection against reinfection. T central memory (TCM), T effector memory (TEM), and long-lived effector (LLE) cells are circulating memory populations with distinct plasticity, migration patterns, and effector functions. Tissue-resident memory (TRM) cells permanently reside in the frontline sites of pathogen entry and provide tissue-specific protection upon reinfection. Here, using single-cell RNA-sequencing (scRNA-seq) and bulk RNA-seq, we examined the different and shared transcriptomes and regulators of TRM cells with other circulating memory populations. Furthermore, we identified heterogeneity within the TRM pool from small intestine and novel transcriptional regulators that may control the phenotypic and functional heterogeneity of TRM cells during acute infection. Our findings provide a resource for future studies to identify novel pathways for enhancing vaccination and immunotherapeutic approaches.

2021 ◽  
Author(s):  
Sarah Adamo ◽  
Jan Michler ◽  
Yves Zurbuchen ◽  
Carlo Cervia ◽  
Patrick Taeschler ◽  
...  

Immunological memory is a hallmark of adaptive immunity and facilitates an accelerated and enhanced immune response upon re-infection with the same pathogen. Since the outbreak of the ongoing coronavirus disease 19 (COVID-19) pandemic, a key question has focused on whether severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-specific T cells stimulated during acute infection give rise to long-lived memory T cells. Using spectral flow cytometry combined with cellular indexing of transcriptomes and T cell receptor (TCR) sequencing we longitudinally characterize individual SARS-CoV-2-specific CD8+ T cells of COVID-19 patients from acute infection to one year into recovery and find a distinct signature identifying long-lived memory CD8+ T cells. SARS-CoV-2-specific memory CD8+ T cells persisting one year after acute infection re-express CD45RA and interleukin-7 receptor alpha (CD127), upregulate T cell factor-1 (TCF1), and maintain low CCR7, thus resembling CD45RA+ effector-memory T (TEMRA) cells. Tracking individual clones of SARS-CoV-2-specific CD8+ T cells, we reveal that an interferon signature marks clones giving rise to long-lived cells, whereas prolonged proliferation and mammalian target of rapamycin (mTOR) signaling are associated with clone contraction and disappearance. Collectively, we identify a transcriptional signature differentiating short- from long-lived memory CD8+ T cells following an acute virus infection in humans.


2010 ◽  
Vol 23 (4) ◽  
pp. 194-203 ◽  
Author(s):  
Kiyoshi Setoguchi ◽  
Hidehiro Kishimoto ◽  
Sakiko Kobayashi ◽  
Hiroaki Shimmura ◽  
Hideki Ishida ◽  
...  

2016 ◽  
Vol 213 (13) ◽  
pp. 3057-3073 ◽  
Author(s):  
Shiki Takamura ◽  
Hideki Yagi ◽  
Yoshiyuki Hakata ◽  
Chihiro Motozono ◽  
Sean R. McMaster ◽  
...  

CD8+ tissue-resident memory T cells (TRM cells) reside permanently in nonlymphoid tissues and provide a first line of protection against invading pathogens. However, the precise localization of CD8+ TRM cells in the lung, which physiologically consists of a markedly scant interstitium compared with other mucosa, remains unclear. In this study, we show that lung CD8+ TRM cells localize predominantly in specific niches created at the site of regeneration after tissue injury, whereas peripheral tissue-circulating CD8+ effector memory T cells (TEM cells) are widely but sparsely distributed in unaffected areas. Although CD69 inhibited sphingosine 1–phosphate receptor 1–mediated egress of CD8+ T cells immediately after their recruitment into lung tissues, such inhibition was not required for the retention of cells in the TRM niches. Furthermore, despite rigid segregation of TEM cells from the TRM niche, prime-pull strategy with cognate antigen enabled the conversion from TEM cells to TRM cells by creating de novo TRM niches. Such damage site–specific localization of CD8+ TRM cells may be important for efficient protection against secondary infections by respiratory pathogens.


2020 ◽  
Vol 355 ◽  
pp. 104155
Author(s):  
Min Sun Shin ◽  
Dongjoo Kim ◽  
Kristina Yim ◽  
Hong-Jai Park ◽  
Sungyong You ◽  
...  

Blood ◽  
2010 ◽  
Vol 116 (17) ◽  
pp. 3238-3248 ◽  
Author(s):  
Enrico Lugli ◽  
Carolyn K. Goldman ◽  
Liyanage P. Perera ◽  
Jeremy Smedley ◽  
Rhonda Pung ◽  
...  

Abstract Interleukin-15 (IL-15) is a cytokine with potential therapeutic application in individuals with cancer or immunodeficiency to promote natural killer (NK)– and T-cell activation and proliferation or in vaccination protocols to generate long-lived memory T cells. Here we report that 10-50 μg/kg IL-15 administered intravenously daily for 12 days to rhesus macaques has both short- and long-lasting effects on T-cell homeostasis. Peripheral blood lymphopenia preceded a dramatic expansion of NK cells and memory CD8 T cells in the circulation, particularly a 4-fold expansion of central memory CD8 T cells and a 6-fold expansion of effector memory CD8 T cells. This expansion is a consequence of their activation in multiple tissues. A concomitant inverted CD4/CD8 T-cell ratio was observed throughout the body at day 13, a result of preferential CD8 expansion. Expanded T- and NK-cell populations declined in the blood soon after IL-15 was stopped, suggesting migration to extralymphoid sites. By day 48, homeostasis appears restored throughout the body, with the exception of the maintenance of an inverted CD4/CD8 ratio in lymph nodes. Thus, IL-15 generates a dramatic expansion of short-lived memory CD8 T cells and NK cells in immunocompetent macaques and has long-term effects on the balance of CD4+ and CD8+ T cells.


Sign in / Sign up

Export Citation Format

Share Document