scholarly journals Nicotinamide Supplementation during the In Vitro Maturation of Oocytes Improves the Developmental Competence of Preimplantation Embryos: Potential Link to SIRT1/AKT Signaling

Cells ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 1550 ◽  
Author(s):  
Marwa El Sheikh ◽  
Ahmed Atef Mesalam ◽  
Muhammad Idrees ◽  
Tabinda Sidrat ◽  
Ayman Mesalam ◽  
...  

Nicotinamide (NAM), the amide form of vitamin B3, plays pivotal roles in regulating various cellular processes including energy production and maintenance of genomic stability. The current study aimed at deciphering the effect of NAM, when administered during in vitro maturation (IVM), on the developmental competence of bovine preimplantation embryos. Our results showed that low NAM concentrations reduced the oxidative stress and improved mitochondrial profile, total cleavage and 8–16 cell stage embryo development whereas the opposite profile was observed upon exposure to high NAM concentrations (10 mM onward). Remarkably, the hatching rates of day-7 and day-8 blastocysts were significantly improved under 0.1 mM NAM treatment. Using RT-qPCR and immunofluorescence, the autophagy-related (Beclin-1 (BECN1), LC3B, and ATG5) and the apoptotic (Caspases; CASP3 and 9) markers were upregulated in oocytes exposed to high NAM concentration (40 mM), whereas only CASP3 was affected, downregulated, following 0.1 mM treatment. Additionally, the number of cells per blastocyst and the levels of SIRT1, PI3K, AKT, and mTOR were higher, while the inner cell mass-specific transcription factors GATA6, SOX2, and OCT4 were more abundant, in day-8 embryos of NAM-treated group. Taken together, to our knowledge, this is the first study reporting that administration of low NAM concentrations during IVM can ameliorate the developmental competence of embryos through the potential regulation of oxidative stress, apoptosis, and SIRT1/AKT signaling.

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Marwa El-Sheikh ◽  
Ahmed Atef Mesalam ◽  
Seok-Hwan Song ◽  
Jonghyeok Ko ◽  
Il-Keun Kong

Despite the numerous studies on melatonin and nicotinamide (NAM, the active form of vitamin B3), the linkage between these two biomolecules in the context of signaling pathways regulating preimplantation embryo development has not yet been investigated. In this study, we used bovine oocyte model to elucidate the effect of melatonin on the developmental competence of oocytes under the stress of high NAM concentrations. Results showed that NAM (20 mM) administration during in vitro maturation (IVM) significantly reduced oocyte maturation and actin distribution, while induced reactive oxygen species (ROS) accumulation and mitochondrial dysfunction, the multiple deleterious effects that were alleviated by melatonin (10−7 M). The RT-qPCR and/or immunofluorescence showed upregulation of the apoptosis (Caspase-3, Caspase-9, and BAX), autophagy (Beclin-1, LC3A, LC3B, ATG7, LAMP1, and LAMP2), cell cycle (P21, P27, and P53), and DNA damage (COX2 and 8-OxoG) specific markers in oocytes matured under NAM treatment, compared to NAM-melatonin dual-treated and the untreated ones. In addition, the total cleavage and blastocyst development rate, as well as the total number of cells and the inner cell mass (ICM) per blastocyst, were reduced, while DNA fragmentation was induced, in the group of NAM sole treatment than NAM-melatonin cotreatment and control. Inspecting the underlying mechanisms behind NAM-associated toxicity revealed an increase in transcription pattern of NAM methylation (NNMT and AHCY) genes in NAM-treated oocytes while the opposite profile was observed upon melatonin supplementation. In conclusion, to our knowledge, this is the first study reporting that melatonin can protect oocytes and embryos from NAM-induced injury through its ROS-scavenging activity together with potential interaction with NAM methylation signaling.


2008 ◽  
Vol 20 (1) ◽  
pp. 165 ◽  
Author(s):  
T. A. L. Brevini ◽  
S. Antonini ◽  
F. Cillo ◽  
G. Pennarossa ◽  
S. Colleoni ◽  
...  

Sox2 is a member of the Sox (SRY-related HMGbox) family. It acts to maintain developmental potential and marks the pluripotent lineage of the early mouse embryo; in particular, as in the case of Oct-4 and Nanog, Sox2 is expressed specifically in the inner cell mass (ICM) and in the epiblast of this species. Moreover, it plays an important role in the transcription network that maintains stem cell pluripotency, interacting with other factors such as Oct-4 and Nanog. Little information is available on this gene in bovine; therefore aims of the present study were: a) to identify and characterize the Sox2 expression profile in bovine oocytes and preimplantation embryos; and b) to investigate its expression pattern in ICM and trophectoderm (TE). Bovine oocytes and embryos were obtained by in vitro maturation and fertilization; blastocysts at Day 7 post-insemination underwent microsurgery to separate TE from ICM. mRNA was isolated from 3 pools, each consisting of 5 MII oocytes, 2-, 4-, 8-, and 16-cell embryos, morulae, blastocysts, ICMs, and TEs. Semi-quantitative analysis of Sox2 expression was performed in the exponential phase of PCR amplification using rabbit globin as exogenous control. Data were analyzed with one-way ANOVA, followed by multiple pairwise comparisons with Tukey test (SigmaStat 2.03, SPSS, Inc., Chicago, IL, USA). Values are presented as mean � SEM and differences of P ≤ 0.05 are considered significant. In order to rule out false negative results, PCR amplifications of isolated ICMs and TEs were extended to the plateau phase. Fragment identity was confirmed by sequencing. Comparison of bovine Sox2 cDNA sequence (EMBL AM774325) with databases revealed a 98%, 93%, and 87% homology with sheep, human, and mouse, respectively. Sox2 mRNA was detectable in oocytes as well as in embryos at the different developmental stages analyzed. Semi-quantitative expression studies revealed that Sox2 was present as both maternal and embryonic transcript; in particular, a statistically significant increase from the 8-cell stage, concomitant with embryo genome activation, was observed. Differently from the mouse, Sox2 was expressed in both bovine ICM and TE, resembling the profile previously shown for Oct-4 (van Eijk et al. 1999 Biol. Reprod. 60, 1093–1103), and suggesting that Sox2 expression might be regulated by Oct-4 also in bovine, as described in mouse and human. These findings also suggest that its expression may become restricted to the ICM only at the expanded hatched stage, as previously described for Oct-4 in pig embryos (Vejlsted et al. 2006 Mol. Reprod. Dev. 73, 709–718). This work was supported by PRIN 2006, FIRST 2005, TECLA-MIUR, and EUROSTELLS-ESF.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marino Maemura ◽  
Hiroaki Taketsuru ◽  
Yuki Nakajima ◽  
Ruiqi Shao ◽  
Ayaka Kakihara ◽  
...  

AbstractIn multicellular organisms, oocytes and sperm undergo fusion during fertilization and the resulting zygote gives rise to a new individual. The ability of zygotes to produce a fully formed individual from a single cell when placed in a supportive environment is known as totipotency. Given that totipotent cells are the source of all multicellular organisms, a better understanding of totipotency may have a wide-ranging impact on biology. The precise delineation of totipotent cells in mammals has remained elusive, however, although zygotes and single blastomeres of embryos at the two-cell stage have been thought to be the only totipotent cells in mice. We now show that a single blastomere of two- or four-cell mouse embryos can give rise to a fertile adult when placed in a uterus, even though blastomere isolation disturbs the transcriptome of derived embryos. Single blastomeres isolated from embryos at the eight-cell or morula stages and cultured in vitro manifested pronounced defects in the formation of epiblast and primitive endoderm by the inner cell mass and in the development of blastocysts, respectively. Our results thus indicate that totipotency of mouse zygotes extends to single blastomeres of embryos at the four-cell stage.


Reproduction ◽  
2021 ◽  
Vol 161 (4) ◽  
pp. 353-363
Author(s):  
Mun-Hyeong Lee ◽  
Pil-Soo Jeong ◽  
Bo-Woong Sim ◽  
Hyo-Gu Kang ◽  
Min Ju Kim ◽  
...  

In the mammalian female reproductive tract, physiological oxygen tension is lower than that of the atmosphere. Therefore, to mimic in vivo conditions during in vitro culture (IVC) of mammalian early embryos, 5% oxygen has been extensively used instead of 20%. However, the potential effect of hypoxia on the yield of early embryos with high developmental competence remains unknown or controversial, especially in pigs. In the present study, we examined the effects of low oxygen tension under different oxygen tension levels on early developmental competence of parthenogenetically activated (PA) and in vitro-fertilized (IVF) porcine embryos. Unlike the 5% and 20% oxygen groups, exposure of PA embryos to 1% oxygen tension, especially in early-phase IVC (0–2 days), greatly decreased several developmental competence parameters including blastocyst formation rate, blastocyst size, total cell number, inner cell mass (ICM) to trophectoderm (TE) ratio, and cellular survival rate. In contrast, 1% oxygen tension did not affect developmental parameters during the middle (2–4 days) and late phases (4–6 days) of IVC. Interestingly, induction of autophagy by rapamycin treatment markedly restored the developmental parameters of PA and IVF embryos cultured with 1% oxygen tension during early-phase IVC, to meet the levels of the other groups. Together, these results suggest that the early development of porcine embryos depends on crosstalk between oxygen tension and autophagy. Future studies of this relationship should explore the developmental events governing early embryonic development to produce embryos with high developmental competence in vitro.


Development ◽  
1993 ◽  
Vol 118 (4) ◽  
pp. 1353-1361
Author(s):  
J.M. Baltz ◽  
J.D. Biggers ◽  
C. Lechene

Most cell types are relatively impermeant to H+ and are able to regulate their intracellular pH by means of plasma membrane proteins, which transport H+ or bicarbonate across the membrane in response to perturbations of intracellular pH. Mouse preimplantation embryos at the 2-cell stage, however, do not appear to possess specific pH-regulatory mechanisms for relieving acidosis. They are, instead, highly permeable to H+, so that the intracellular pH in the acid and neutral range is determined by the electrochemical equilibrium of H+ across the plasma membrane. When intracellular pH is perturbed, the rate of the ensuing H+ flux across the plasma membrane is determined by the H+ electrochemical gradient: its dependence on external K+ concentration indicates probable dependence on membrane potential and the rate depends on the H+ concentration gradient across the membrane. The large permeability at the 2-cell stage is absent or greatly diminished in the trophectoderm of blastocysts, but still present in the inner cell mass. Thus, the permeability to H+ appears to be developmentally regulated.


2021 ◽  
Vol 8 ◽  
Author(s):  
Yasumitsu Masuda ◽  
Ryo Hasebe ◽  
Yasushi Kuromi ◽  
Masayoshi Kobayashi ◽  
Kanako Urataki ◽  
...  

Conception rates for transferred bovine embryos are lower than those for artificial insemination. Embryo transfer (ET) is widely used in cattle but many of the transferred embryos fail to develop, thus, a more effective method for selecting bovine embryos suitable for ET is required. To evaluate the developmental potential of bovine preimplantation embryos (2-cell stage embryos and blastocysts), we have used the non-invasive method of optical coherence tomography (OCT) to obtain live images. The images were used to evaluate 22 parameters of blastocysts, such as the volume of the inner cell mass and the thicknesses of the trophectoderm (TE). Bovine embryos were obtained by in vitro fertilization (IVF) of the cumulus-oocyte complexes aspirated by ovum pick-up from Japanese Black cattle. The quality of the blastocysts was examined under an inverted microscope and all were confirmed to be Code1 according to the International Embryo Transfer Society standards for embryo evaluation. The OCT images of embryos were taken at the 2-cell and blastocyst stages prior to the transfer. In OCT, the embryos were irradiated with near-infrared light for a few minutes to capture three-dimensional images. Nuclei of the 2-cell stage embryos were clearly observed by OCT, and polynuclear cells at the 2-cell stage were also clearly found. With OCT, we were able to observe embryos at the blastocyst stage and evaluate their parameters. The conception rate following OCT (15/30; 50%) is typical for ETs and no newborn calves showed neonatal overgrowth or died, indicating that the OCT did not adversely affect the ET. A principal components analysis was unable to identify the parameters associated with successful pregnancy, while by using hierarchical clustering analysis, TE volume has been suggested to be one of the parameters for the evaluation of bovine embryo. The present results show that OCT imaging can be used to investigate time-dependent changes of IVF embryos. With further improvements, it should be useful for selecting high-quality embryos for transfer.


Development ◽  
1995 ◽  
Vol 121 (3) ◽  
pp. 743-753 ◽  
Author(s):  
J.E. Collins ◽  
J.E. Lorimer ◽  
D.R. Garrod ◽  
S.C. Pidsley ◽  
R.S. Buxton ◽  
...  

The molecular mechanisms regulating the biogenesis of the first desmosomes to form during mouse embryogenesis have been studied. A sensitive modification of a reverse transcriptase-cDNA amplification procedure has been used to detect transcripts of the desmosomal adhesive cadherin, desmocollin. Sequencing of cDNA amplification products confirmed that two splice variants, a and b, of the DSC2 gene are transcribed coordinately. Transcripts were identified in unfertilized eggs and cumulus cells and in cleavage stages up to the early 8-cell stage, were never detected in compact 8-cell embryos, but were evident again either from the 16-cell morula or very early blastocyst (approx 32-cells) stages onwards. These two phases of transcript detection indicate DSC2 is encoded by maternal and embryonic genomes. Previously, we have shown that desmocollin protein synthesis is undetectable in eggs and cleavage stages but initiates at the early blastocyst stage when desmocollin localises at, and appears to regulate assembly of, nascent desmosomes that form in the trophectoderm but not in the inner cell mass (Fleming, T. P., Garrod, D. R. and Elsmore, A. J. (1991), Development 112, 527–539). Maternal DSC2 mRNA is therefore not translated and presumably is inherited by blastomeres before complete degradation. Our results suggest, however, that initiation of embryonic DSC2 transcription regulates desmocollin protein expression and thereby desmosome formation. Moreover, data from blastocyst single cell analyses suggest that embryonic DSC2 transcription is specific to the trophectoderm lineage. Inhibition of E-cadherin-mediated cell-cell adhesion did not influence the timing of DSC2 embryonic transcription and protein expression. However, isolation and culture of inner cell masses induced an increase in the amount of DSC2 mRNA and protein detected. Taken together, these results suggest that the presence of a contact-free cell surface activates DSC2 transcription in the mouse early embryo.


Development ◽  
1973 ◽  
Vol 29 (3) ◽  
pp. 601-615
Author(s):  
M. H. L. Snow

Mouse embryos were grown in vitro from the 2-cell stage to blastocysts in the presence of [3H]thymidine. Methyl-T-thymidine and thymidine-6-T(n) were used and both forms found to be lethal at concentrations above 0·1 μCi/ml. Both forms of [3H]Tdr at concentrations between 0·01 and 0·1 μCi/ml caused a highly significant (P < 0·001) reduction in blastocyst cell number. The reduction in cell number, which was positively correlated with specific activity and tritium concentration, was associated with cell damage typical of radiation damage caused by tritium disintegration. Thymidine-6-T(n) also significantly reduced the number of 2-cell embryos forming blastocysts whereas methyl-T-Tdr did not. This difference in effect is assumed to be caused by contamination of one form of [3H]Tdr with a by-product of the tritiation process. A study of the cleavage stages showed that almost all the reduction in cell numbers could be accounted for by selective cell death occurring at the 16-cell stage. Cells which survive that stage cleave at a normal rate. The cells that are most susceptible to [3H]Tdr damage were found to normally contribute to the inner cell mass. The [3H]Tdr-resistant cells form the trophoblast. It is possible to grow blastocysts in [3H]Tdr such that they contain no inner cell mass but are composed entirely of trophoblast. Comparatively short (12 h) incubation with [3H]Tdr at any stage prior to the 16-cell stage will cause this damage. Possible reasons for this differential effect are discussed, and also compared with damage caused by X-irradiation.


2007 ◽  
Vol 27 (8) ◽  
pp. 3123-3130 ◽  
Author(s):  
Klaus Fortschegger ◽  
Bettina Wagner ◽  
Regina Voglauer ◽  
Hermann Katinger ◽  
Maria Sibilia ◽  
...  

ABSTRACT SNEV (Prp19, Pso4, NMP200) is a nuclear matrix protein known to be involved in pre-mRNA splicing, ubiquitylation, and DNA repair. In human umbilical vein endothelial cells, SNEV overexpression delayed the onset of replicative senescence. Here we analyzed the function of the mouse SNEV gene in vivo by employing homologous recombination in mice and conclude that SNEV is indispensable for early mouse development. Mutant preimplantation embryos initiated blastocyst formation but died shortly thereafter. Outgrowth of SNEV-null blastocysts showed a lack of proliferation of cells of the inner cell mass, which subsequently underwent cell death. While SNEV-heterozygous mice showed no overt phenotype, heterozygous mouse embryonic fibroblast cell lines with reduced SNEV levels displayed a decreased proliferative potential in vitro. Our experiments demonstrate that the SNEV protein is essential, functionally nonredundant, and indispensable for mouse development.


2018 ◽  
Vol 30 (12) ◽  
pp. 1728 ◽  
Author(s):  
M. Arias-Álvarez ◽  
R. M. García-García ◽  
J. López-Tello ◽  
P. G. Rebollar ◽  
A. Gutiérrez-Adán ◽  
...  

The developmental competence of in vitro maturation (IVM) oocytes can be enhanced by antioxidant agents. The present study investigated, for the first time in the rabbit model, the effect of adding α-tocopherol (0, 100, 200 and 400 µM) during IVM on putative transcripts involved in antioxidant defence (superoxide dismutase 2, mitochondrial (SOD2), glutathione peroxidase 1 (GPX1), catalase (CAT)), cell cycle regulation and apoptosis cascade (apoptosis tumour protein 53 (TP53), caspase 3, apoptosis-related cysteine protease (CASP3)), cell cycle progression (cellular cycle V-Akt murine thymoma viral oncogene homologue 1 (AKT1)), cumulus expansion (gap junction protein, alpha 1, 43 kDa (GJA1) and prostaglandin-endoperoxide synthase 2 (prostaglandin G/H synthase and cyclo-oxygenase) (PTGS2)) and metabolism (glucose-6-phosphate dehydrogenase (G6PD)). Meiotic progression, mitochondrial reallocation, cumulus cell apoptosis and the developmental competence of oocytes after IVF were also assessed. Expression of SOD2, CAT, TP53, CASP3 and GJA1 was downregulated in cumulus–oocyte complexes (COCs) after IVM with 100 μM α-tocopherol compared with the group without the antioxidant. The apoptotic rate and the percentage of a non-migrated mitochondrial pattern were lower in COCs cultured with 100 μM α-tocopherol, consistent with better-quality oocytes. In fact, early embryo development was improved when 100 μM α-tocopherol was included in the IVM medium, but remained low compared with in vivo-matured oocytes. In conclusion, the addition of 100 μM α-tocopherol to the maturation medium is a suitable approach to manage oxidative stress and apoptosis, as well as for increasing the in vitro developmental competence of rabbit oocytes.


Sign in / Sign up

Export Citation Format

Share Document