scholarly journals Spatial and Temporal Distribution of Biomass Open Burning Emissions in the Greater Mekong Subregion

Climate ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 90
Author(s):  
Agapol Junpen ◽  
Jirataya Roemmontri ◽  
Athipthep Boonman ◽  
Penwadee Cheewaphongphan ◽  
Pham Thi Bich Thao ◽  
...  

Moderate Resolution Imaging Spectroradiometer (MODIS) burnt area products are widely used to assess the damaged area after wildfires and agricultural burning have occurred. This study improved the accuracy of the assessment of the burnt areas by using the MCD45A1 and MCD64A1 burnt area products with the finer spatial resolution product from the Landsat-8 Operational Land Imager/Thermal Infrared Sensor (OLI/TIRS) surface reflectance data. Thus, more accurate wildfires and agricultural burning areas in the Greater Mekong Subregion (GMS) for the year 2015 as well as the estimation of the fire emissions were reported. In addition, the results from this study were compared with the data derived from the fourth version of the Global Fire Emissions Database (GFED) that included small fires (GFED4.1s). Upon analysis of the data of the burnt areas, it was found that the burnt areas obtained from the MCD64A1 and MCD45A1 had lower values than the reference fires for all vegetation fires. These results suggested multiplying the MCD64A1 and MCD45A1 for the GMS by the correction factors of 2.11−21.08 depending on the MODIS burnt area product and vegetation fires. After adjusting the burnt areas by the correction factor, the total biomass burnt area in the GMS during the year 2015 was about 33.3 million hectares (Mha), which caused the burning of 109 ± 22 million tons (Mt) of biomass. This burning emitted 178 ± 42 Mt of CO2, 469 ± 351 kilotons (kt) of CH4, 18 ± 3 kt of N2O, 9.4 ± 4.9 Mt of CO, 345 ± 206 kt of NOX, 46 ± 25 kt of SO2, 147 ± 117 kt of NH3, 820 ± 489 kt of PM2.5, 60 ± 32 kt of BC, and 350 ± 205 kt of OC. Furthermore, the emission results of fine particulate matter (PM2.5) in all countries were slightly lower than GFED4.1s in the range between 0.3 and 0.6 times.

Author(s):  
Lufuno Vhengani ◽  
Philip Frost ◽  
Cheewai Lai ◽  
Ndumiso Booi ◽  
Riaan van den Dool ◽  
...  
Keyword(s):  

2017 ◽  
Vol 26 (2) ◽  
pp. 122 ◽  
Author(s):  
Kunpeng Yi ◽  
Yulong Bao ◽  
Jiquan Zhang

This study presents the spatial and temporal patterns of vegetation fires in China based on a combination of national fire records (1950–2010) and satellite fire data (2001–12). This analysis presents the first attempt to understand existing patterns of open fires and their consequences for the whole of China. We analysed inter- and intra-annual fire trends and variations in nine subregions of China as well as associated monthly meteorological data from 130 stations within a 50-year period. During the period 2001–12, an average area of 3.2 × 106 ha was consumed by fire per year in China. The Chinese fire season has two peaks occurring in the spring and autumn. The profiles of the burnt area for each subregion exhibit distinct seasonality. The majority of the vegetation fires occurred in the north-eastern and south-western provinces. We analysed quantitative relationships between climate (temperature and precipitation) and burnt area. The results indicate a synchronous relationship between precipitation variation and burnt area. The data in this paper reveal how climate and human activities interact to create China’s distinctive pyrogeography.


2011 ◽  
Vol 11 (12) ◽  
pp. 3343-3358 ◽  
Author(s):  
M. G. Pereira ◽  
B. D. Malamud ◽  
R. M. Trigo ◽  
P. I. Alves

Abstract. We focus here on a mainland Continental Portuguese Rural Fire Database (PRFD) that includes 450 000 fires, the largest such database in Europe in terms of total number of recorded fires in the 1980–2005 period. In this work, we (a) list the most important factors for triggering and controlling the fire regime in mainland Continental Portugal, (b) describe the dataset's production, (c) discuss procedures adopted to identify and correct different fire data inconsistencies, creating a modified PRFD which we use here and make available as Supplement, (d) explore some basic temporal and completeness properties of the data. We find that the dataset's minimum measured burnt areas have changed with time between AF = 0.1 ha (1980–1990), AF = 0.01 ha (1991–1992), and AF = 0.001 ha (1992–2005), with varying degrees of completeness down to these values. These changes in minimum area measured are responsible for greater numbers of fires being recorded. A relatively small number of large fires in the PRFD are responsible for the majority of the burnt area. For example, fires with AF > 100 ha represent about 1% of all fire records but 75% of total burnt area. Finally, we consider for each Continental Portugal district and for the 26-yr period, the total number of rural fires and area burnt in forests and shrublands, each normalized by district areas. We find that the highest numbers of fires per unit area are in highly populated districts, and that the largest fraction of burnt area is in forested areas, coinciding with large parcels of continuous forests (predominantly rural and moderately urban areas).


2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Wasir Samad Daming ◽  
Muhammad Anshar Amran ◽  
Amir Hamzah Muhiddin ◽  
Rahmadi Tambaru

Surface chlorophyll-a (Chl-a) distribution have been analyzed with seasonal variation during southeast monsoon in southern part of Makassar Strait and Flores Sea. Satellite data of Landsat-8 is applied to this study to formulate the distribution of chlorophyll concentration during monsoonal wind period. The distribution of chlorophyll concentration was normally peaked condition in August during southeast monsoon. Satellite data showed that a slowdown in the rise of the distribution of chlorophyll in September with a lower concentration than normal is likely due to a weakening the strength of southeast trade winds during June – July – August 2016. Further analysis shows that the southern part of the Makassar strait is likely occurrence of upwelling characterized by increase in surface chlorophyll concentrations were identified as the potential area of fishing ground.


2015 ◽  
Vol 3 (2) ◽  
pp. 1203-1230 ◽  
Author(s):  
C. Hernandez ◽  
P. Drobinski ◽  
S. Turquety ◽  
J.-L. Dupuy

Abstract. MODIS satellite observations of fire size and ERA-Interim meteorological reanalysis are used to derive a relationship between burnt area and wind speed over the Mediterranean region and Eastern Europe. As intuitively expected, the burnt area associated to the largest wildfires is an increasing function of wind speed in most situations. It is always the case in Eastern Europe. It is also the case in the Mediterranean for moderate temperature anomaly. In situations of severe heatwaves and droughts, the relationship between burnt area and wind speed displays bimodal shape. Burnt areas are large for low 10 m wind speed (lower than 2 m s−1), decrease for moderate wind speed values (lower than 5 m s−1 and larger than 2 m s−1) and increase again for large wind speed (larger than 5 m s−1). To explain such behavior fire propagation is investigated using a probabilistic cellular automaton model. The observed relationship between burnt area and wind speed can be interpreted in terms of percolation threshold which mainly depends on local terrain slope and vegetation state (type, density, fuel moisture). In eastern Europe, the percolation threshold is never exceeded for observed wind speeds. In the Mediterranean Basin we see two behaviors. During moderately hot weather, the percolation threshold is passed when the wind grows strong. On the other hand, in situations of severe Mediterranean heatwaves and droughts, moderate wind speed values impair the propagation of the wildfire against the wind and do not sufficiently accelerate the forward propagation to allow a growth of wildfire size.


2018 ◽  
Vol 10 (11) ◽  
pp. 3889 ◽  
Author(s):  
Rosa Lasaponara ◽  
Biagio Tucci ◽  
Luciana Ghermandi

In this paper, we present and discuss the preliminary tools we devised for the automatic recognition of burnt areas and burn severity developed in the framework of the EU-funded SERV_FORFIRE project. The project is focused on the set up of operational services for fire monitoring and mitigation specifically devised for decision-makers and planning authorities. The main objectives of SERV_FORFIRE are: (i) to create a bridge between observations, model development, operational products, information translation and user uptake; and (ii) to contribute to creating an international collaborative community made up of researchers and decision-makers and planning authorities. For the purpose of this study, investigations into a fire burnt area were conducted in the south of Italy from a fire that occurred on 10 August 2017, affecting both the protected natural site of Pignola (Potenza, South of Italy) and agricultural lands. Sentinel 2 data were processed to identify and map different burnt areas and burn severity levels. Local Index for Statistical Analyses LISA were used to overcome the limits of fixed threshold values and to devise an automatic approach that is easier to re-apply to diverse ecosystems and geographic regions. The validation was assessed using 15 random plots selected from in situ analyses performed extensively in the investigated burnt area. The field survey showed a success rate of around 95%, whereas the commission and omission errors were around 3% of and 2%, respectively. Overall, our findings indicate that the use of Sentinel 2 data allows the development of standardized burn severity maps to evaluate fire effects and address post-fire management activities that support planning, decision-making, and mitigation strategies.


2017 ◽  
Vol 17 (19) ◽  
pp. 12239-12252 ◽  
Author(s):  
Simon Whitburn ◽  
Martin Van Damme ◽  
Lieven Clarisse ◽  
Daniel Hurtmans ◽  
Cathy Clerbaux ◽  
...  

Abstract. Vegetation fires are a major source of ammonia (NH3) in the atmosphere. Their emissions are mainly estimated using bottom-up approaches that rely on uncertain emission factors. In this study, we derive new biome-specific NH3 enhancement ratios relative to carbon monoxide (CO), ERNH3 ∕ CO (directly related to the emission factors), from the measurements of the IASI sounder onboard the Metop-A satellite. This is achieved for large tropical regions and for an 8-year period (2008–2015). We find substantial differences in the ERNH3 ∕ CO ratios between the biomes studied, with calculated values ranging from 7  ×  10−3 to 23  ×  10−3. For evergreen broadleaf forest these are typically 50–75 % higher than for woody savanna and savanna biomes. This variability is attributed to differences in fuel types and size and is in line with previous studies. The analysis of the spatial and temporal distribution of the ERNH3 ∕ CO ratio also reveals a (sometimes large) within-biome variability. On a regional level, woody savanna shows, for example, a mean ERNH3 ∕ CO ratio for the region of Africa south of the Equator that is 40–75 % lower than in the other five regions studied, probably reflecting regional differences in fuel type and burning conditions. The same variability is also observed on a yearly basis, with a peak in the ERNH3 ∕ CO ratio observed for the year 2010 for all biomes. These results highlight the need for the development of dynamic emission factors that take into better account local variations in fuel type and fire conditions. We also compare the IASI-derived ERNH3 ∕ CO ratio with values reported in the literature, usually calculated from ground-based or airborne measurements. We find general good agreement in the referenced ERNH3 ∕ CO ratio except for cropland, for which the ERNH3 ∕ CO ratio shows an underestimation of about 2–2.5 times.


2019 ◽  
Vol 28 (3) ◽  
pp. 254 ◽  
Author(s):  
F. Pimont ◽  
J. Ruffault ◽  
N.K. Martin-StPaul ◽  
J.-L. Dupuy

Identifying the links between fire danger metrics and fire activity is critical in various operational and research fields. A common methodology consists in analysing the relationship between cumulative burnt areas and fire danger metrics. Building on this approach, it has been proposed that fuel moisture content (FMC) drives fire activity in some ecosystems through between one and three breakpoints corresponding to the onset or saturation of fire activity. We demonstrate, through two different approaches, that this methodology is incorrect, because it is biased by the frequency distribution of FMC values. From comparison with a neutral fire distribution and correction for the frequency bias, we show that cumulative burnt area breakpoints are spurious: an upper breakpoint might exist (but would be higher than expected), while no evidence of reduced fire danger was detected for the lowest values of FMC (on the contrary, a secondary increase was detected). Our findings clearly suggest that previous breakpoints resulting from this methodology should be considered with caution, as erroneous conclusions regarding fire danger breakpoints could have major consequences for both fire safety and science outcomes. Finally, we discuss widespread confusion between fire danger breakpoints and fire danger levels, which explains most previous erroneous conclusions.


Author(s):  
. Suwarsono ◽  
Any Zubaidah ◽  
. Parwati ◽  
M. Rokhis Khomarudin

Biomass burning in an area will leave traces of fire such as charcoal, ash, and outcrop of land in the area known as the burned area. The burnt area is thought to have a relatively higher temperature than the surrounding area were not burned. This study aims to determine the characteristics of the temperature of the burned area using remote sensing data of Landsat-8 TIRS (Thermal Infra Red Sensor). The selected research locations are parts of Central Kalimantan and South Kalimantan incoming Landsat scene-8 path / row 118/062. The research method is a data processing Landsat-8 TIRS (channels 10 and 11) to produce an image of the brightness temperature as well as data analysis includes a statistical analysis of central tendency of the values of the brightness temperature of the sample (calculation of mean and standard deviation) as well as distance calculation (D-value). The results showed that the brightness temperature data either channel 10 or channel 11 Landsat-8 TIRS has good ability in separating the burned area and bare soil, but has a low ability to separate the burned areas and settlements. Thus, the brightness temperature parameter cannot be used as a single variable for the extraction of burned areas in a scene image of a single acquisition. Abstrak Peristiwa kebakaran biomassa pada suatu daerah akan menyisakan bekas-bekas kebakaran seperti arang, abu, serta singkapan tanah pada daerah tersebut yang dikenal dengan burned area. Daerah bekas kebakaran tersebut diduga memiliki temperatur yang relatif lebih tinggi dibandingkan dengan daerah sekitarnya yang tidak terbakar. Penelitian ini bertujuan untuk mengetahui karakteristik temperatur burned area menggunakan data penginderaan jauh Landsat-8 Thermal Infra Red Sensor (TIRS). Lokasi penelitian yang dipilih adalah sebagian wilayah Kalimantan Tengah dan Kalimantan Selatan yang masuk scene Landsat-8 path/row 118/062. Metode penelitian yang dilakukan adalah pengolahan data Landsat-8 TIRS (kanal 10 dan 11) untuk menghasilkan citra suhu kecerahan serta analisis data yang meliputi analisis statistik tendensi sentral dari nilai-nilai suhu kecerahan dari sampel (perhitungan rerata dan standar deviasi) serta perhitungan jarak (D-value). Hasil penelitian menunjukkan bahwa data suhu kecerahan baik kanal 10 maupun kanal 11 Landsat-8 TIRS memiliki kemampuan yang baik dalam memisahkan burned area dan lahan terbuka, namun memiliki kemampuan yang rendah untuk memisahkan burned area dan permukiman. Dengan demikian, parameter suhu kecerahan belum bisa dipergunakan sebagai variabel tunggal untuk ekstraksi burned area pada suatu scene citra perekaman tunggal.


Sign in / Sign up

Export Citation Format

Share Document