A Review on Precision Polishing Technology of Single-Crystal SiC
Single-crystal SiC is a typical third-generation semiconductor power-device material because of its excellent electronic and thermal properties. An ultrasmooth surface with atomic surface roughness that is scratch free and subsurface damage (SSD) free is indispensable before its application. As the last process to reduce the surface roughness and remove surface defects, precision polishing of single-crystal SiC is essential. In this paper, precision polishing technologies for 4H-SiC and 6H-SiC, which are the most commonly used polytypes of single-crystal SiC, such as chemical mechanical polishing (CMP), photocatalytic chemical mechanical polishing (PCMP), plasma-assisted polishing (PAP), electrochemical mechanical polishing (ECMP), and catalyst-referred etching (CARE), were reviewed and compared with emphasis on the experimental setup, polishing mechanism, material removal rate (MRR), and surface roughness. An atomically smooth surface without SSD can be obtained by CMP, PCMP, PAP, and CARE for single-crystal SiC. However, their MRRs are meager, and the waste treatment after CMP is difficult and expensive. Moreover, PAP’s operation is poor due to the complex polishing system, plasma generation, and irradiation devices. A high MRR can be achieved by ECMP. In addition, it is an environmentally friendly precision polishing process for single-crystal SiC since the neutral salt solution is generally used as the electrolyte in ECMP. However, the formation of the egglike protrusions at the oxide/SiC interface during anodic oxidation would lead to a bigger surface roughness after ECMP than that after PAP is processed. The HF solution used in CARE was toxic, and Pt was particularly expensive. Ultrasonic vibration-assisted single-crystal SiC polishing and electrolyte plasma polishing (EPP) were discussed; furthermore, the research direction of further improving the surface quality and MRR of single-crystal SiC was prospected.