scholarly journals Smartphone Handwritten Circuits Solver Using Augmented Reality and Capsule Deep Networks for Engineering Education

2021 ◽  
Vol 11 (11) ◽  
pp. 661
Author(s):  
Marah Alhalabi ◽  
Mohammed Ghazal ◽  
Fasila Haneefa ◽  
Jawad Yousaf ◽  
Ayman El-Baz

Resolving circuit diagrams is a regular part of learning for school and university students from engineering backgrounds. Simulating circuits is usually done manually by creating circuit diagrams on circuit tools, which is a time-consuming and tedious process. We propose an innovative method of simulating circuits from hand-drawn diagrams using smartphones through an image recognition system. This method allows students to use their smartphones to capture images instead of creating circuit diagrams before simulation. Our contribution lies in building a circuit recognition system using a deep learning capsule networks algorithm. The developed system receives an image captured by a smartphone that undergoes preprocessing, region proposal, classification, and node detection to get a Netlist and exports it to a circuit simulator program for simulation. We aim to improve engineering education using smartphones by (1) achieving higher accuracy using less training data with capsule networks and (2) developing a comprehensive system that captures hand-drawn circuit diagrams and produces circuit simulation results. We use 400 samples per class and report an accuracy of 96% for stratified 5-fold cross-validation. Through testing, we identify the optimum distance for taking circuit images to be 10 to 20 cm. Our proposed model can identify components of different scales and rotations.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Mingzhu Tang ◽  
Xiangwan Fu ◽  
Huawei Wu ◽  
Qi Huang ◽  
Qi Zhao

Traffic flow anomaly detection is helpful to improve the efficiency and reliability of detecting fault behavior and the overall effectiveness of the traffic operation. The data detected by the traffic flow sensor contains a lot of noise due to equipment failure, environmental interference, and other factors. In the case of large traffic flow data noises, a traffic flow anomaly detection method based on robust ridge regression with particle swarm optimization (PSO) algorithm is proposed. Feature sets containing historical characteristics with a strong linear correlation and statistical characteristics using the optimal sliding window are constructed. Then by providing the feature sets inputs to the PSO-Huber-Ridge model and the model outputs the traffic flow. The Huber loss function is recommended to reduce noise interference in the traffic flow. The L2 regular term of the ridge regression is employed to reduce the degree of overfitting of the model training. A fitness function is constructed, which can balance the relative size between the k-fold cross-validation root mean square error and the k-fold cross-validation average absolute error with the control parameter η to improve the optimization efficiency of the optimization algorithm and the generalization ability of the proposed model. The hyperparameters of the robust ridge regression forecast model are optimized by the PSO algorithm to obtain the optimal hyperparameters. The traffic flow data set is used to train and validate the proposed model. Compared with other optimization methods, the proposed model has the lowest RMSE, MAE, and MAPE. Finally, the traffic flow that forecasted by the proposed model is used to perform anomaly detection. The abnormality of the error between the forecasted value and the actual value is detected by the abnormal traffic flow threshold based on the sliding window. The experimental results verify the validity of the proposed anomaly detection model.


Repositor ◽  
2020 ◽  
Vol 2 (8) ◽  
Author(s):  
Nabillah Annisa Rahmayanti ◽  
Yufis Azhar ◽  
Gita Indah Marthasari

AbstrakBullying sering terjadi pada anak-anak khususnya remaja dan meresahkan para orang tua. Maraknya kasus bullying di negeri ini bahkan sampai menyebabkan korban jiwa. Hal ini dapat dicegah dengan cara mengetahui gejala-gejala seorang anak yang mengalami bullying. Kondisi seorang anak yang tidak dapat mengungkapkan keluh kesahnya, tentu membuat orang tua dan juga guru di sekolah sukar dalam mengerti apa yang sedang menimpanya. Hal tersebut bisa saja dikarenakan anak sedang mengalami tindakan bullying oleh teman-temannya. Oleh karena itu peneliti memiliki tujuan untuk menghasilkan fitur yang telah terseleksi dengan menggunakan algoritma C5.0. Sehingga dengan menggunakan fitur yang telah terseleksi dapat meringankan pekerjaan dalam mengisi kuisioner dan juga mempersingkat waktu dalam menentukan seorang anak apakah terkena bullying atau tidak berdasarkan gejala yang ada di setiap pertanyaan pada kuisioner. Untuk menunjang data dalam penelitian ini, peneliti menggunakan kuisioner untuk mendapatkan jawaban dari pertanyaan yang berisi tentang gejala anak yang menjadi korban bullying. Jawaban dari responden akan diolah menjadi kumpulan data yang nantinya akan dibagi menjadi data latih dan data uji untuk selanjutnya diteliti dengan menggunakan Algoritma C5.0. Metode evaluasi yang digunakan pada penelitian ini yaitu 10 fold cross validation dan untuk menilai akurasi menggunakan confusion matrix. Penelitian ini juga melaukan perbandingan dengan beberapa algoritma klasifikasi lainnya yaitu Naive Bayes dan KNN yang bertujuan untuk melhat seberapa akurat algoritma C5.0 dalam melakukan seleksi fitur. Hasil pengujian menunjukkan bahwa algoritma C5.0 mampu melakukan seleksi fitur dan juga memiliki tingkat akurasi yang lebih baik jika dibandingkan dengan algoritma Naive Bayes dan KNN dengan hasil akurasi sebelum menggunakan seleksi fitur sebesar 92,77% dan setelah menggunakan seleksi fitur sebesar 93,33%. Abstract Bullying often occurs in children, especially teenagers and unsettles parents. The rise of cases of bullying in this country even caused casualties. This can be prevented by knowing the symptoms of a child who has bullying. The condition of a child who cannot express his complaints, certainly makes parents and teachers at school difficult to understand what is happening to them. This could be because the child is experiencing bullying by his friends. Therefore, researchers have a goal to produce selected features using the C5.0 algorithm. So using the selected features can ease the work in filling out questionnaires and also shorten the time in determining whether a child is exposed to bullying or not based on the symptoms in each question in the questionnaire. To support the data in this study, the researcher used a questionnaire to get answers to questions that contained the symptoms of children who were victims of bullying. The answer from the respondent will be processed into a data collection which will later be divided into training data and test data for further research using the C5.0 Algorithm. The evaluation method used in this study is 10 fold cross validation and to assess accuracy using confusion matrix. This study also carried out a comparison with several other classification algorithms, namely Naive Bayes and KNN which aimed to see how accurate the C5.0 algorithm was in feature selection. The test results show that the C5.0 algorithm is capable of feature selection and also has a better accuracy compared to the Naive Bayes and KNN algorithms with accuracy results before using feature selection of 92.77% and after using feature selection of 93.33%


2018 ◽  
Vol 1 (2) ◽  
pp. 70-75
Author(s):  
Abdul Rozaq

Building materials is an important factor to built a house, to estimate funds the needs of build a house, consumers or developers can estimate the funds needed to build a house. To solve these problems use case base reasoning (CBR) approach, which method is capable of reasoning or solving the problem based on the cases that have been there as a solution to new problems. The system built in this study is a CBR system for determine the needs of house building materials. The consultation process is done by inserting new cases compared to the old case similarity value is then calculated using the nearest neighbor. The first test by inserting test data then compared with each type of home then obtained an accuracy of 83.6%. The second test is done by K-fold Cross Validation with K = 25 with the number of data 200, the data will be divided into two parts, namely the training data and test data, training data as many as 192 data and test data as many as 8 data. K-Fold Cross Validation method. This CBR system can produce an accuracy of 85.71%


2021 ◽  
Author(s):  
Elisabeth Pfaehler ◽  
Daniela Euba ◽  
Andreas Rinscheid ◽  
Otto S. Hoekstra ◽  
Josee Zijlstra ◽  
...  

Abstract Background Machine learning studies require a large number of images often obtained on different PET scanners. When merging these images, the use of harmonized images following EARL-standards is essential. However, when including retrospective images, EARL accreditation might not have been in place. The aim of this study was to develop a convolutional neural network (CNN) that can identify retrospectively if an image is EARL compliant and if it is meeting older or newer EARL-standards. Materials and Methods 96 PET images acquired on three PET/CT systems were included in the study. All images were reconstructed with the locally clinically preferred, EARL1, and EARL2 compliant reconstruction protocols. After image pre-processing, one CNN was trained to separate clinical and EARL compliant reconstructions. A second CNN was optimized to identify EARL1 and EARL2 compliant images. The accuracy of both CNNs was assessed using 5-fold cross validation. The CNNs were validated on 24 images acquired on a PET scanner not included in the training data. To assess the impact of image noise on the CNN decision, the 24 images were reconstructed with different scan durations. Results In the cross-validation, the first CNN classified all images correctly. When identifying EARL1 and EARL2 compliant images, the second CNN identified 100% EARL1 compliant and 85% EARL2 compliant images correctly. The accuracy in the independent dataset was comparable to the cross-validation accuracy. The scan duration had almost no impact on the results. Conclusion The two CNNs trained in this study can be used to retrospectively include images in a multi-center setting by e.g. adding additional smoothing. This method is especially important for machine learning studies where the harmonization of images from different PET systems is essential.


2018 ◽  
Vol 232 ◽  
pp. 02026
Author(s):  
Lu Zhou ◽  
Guang-geng Li ◽  
Yu-mei Zhou ◽  
Dan Yin ◽  
Yan Sun ◽  
...  

In the study, we propose a TCM diagnosis model that can be used for multi-label classification and give clear diagnosis, as well as the basis for diagnosis and differentiation when the symptoms correspond to multiple diseases or syndromes. The implementation of the model is divided into three steps. Firstly, choose the machine learning algorithm to train the TCM diagnosis model. The features of the training data are symptoms and the labels are diseases or syndromes. Secondly, give the number α (α>1, α∈Z+), the model will output the diagnoses with the top α highest probability according to the input symptoms as candidate diagnoses. Finally, the rules of differential diagnosis are designed to determine which candidate diagnoses should be reserved, thereby complete the multi-label classification. In our test dataset, by 10-fold cross-validation, the average accuracy of the single label classification was 0.882; the average precision was 0.974; the average recall was 1.000; the average f1 score was 0.967; the average accuracy of the multi-label classification was 0.706; the average micro precision was 0.934; the average micro recall was 0.941 and the average hamming loss was 0.060. Through the test we can know that this model had a good potential for auxiliary decision making in clinical diagnosis and treatment.


2018 ◽  
Vol 7 (2.27) ◽  
pp. 93
Author(s):  
Pooja Thakur ◽  
Mandeep Singh ◽  
Harpreet Singh ◽  
Prashant Singh Rana

H1B work visas are utilized to contract profoundly talented outside specialists at low wages in America which help firms and impact U.S economy unfavorably. In excess of 100,000 individuals for every year apply tight clamp for higher examinations and also to work and number builds each year. Selections of foreigners are done by lottery system which doesn’t follow any full proofed method and so results cause a loophole between US-based and foreign workers. We endeavor to examine petitions filled from 2015 to 2017 with the goal that a superior prediction model need to develop using machine learning which helps to foresee the aftereffect of the request of ahead of time which shows whether an appeal to is commendable or not. In this work, we use seven classification models Decision tree, C5.0, Random Forest, Naïve Bayes, Neural Network and SVM which predict the status of a petition as certified, denied, withdrawal or certified with-drawls. The predictions of these models are checked on accuracy parameter. It is found that C5.0 outperform with the best accuracy of 94.62 as a single model but proposed model gives better results of 95.4 accuracies which is built by machine ensemble method and this is validated by 10 fold cross-validation. 


Soil Research ◽  
2011 ◽  
Vol 49 (4) ◽  
pp. 305 ◽  
Author(s):  
Brian Horton ◽  
Ross Corkrey

Soil temperatures are related to air temperature and rainfall on the current day and preceding days, and this can be expressed in a non-linear relationship to provide a weighted value for the effect of air temperature or rainfall based on days lag and soil depth. The weighted minimum and maximum air temperatures and weighted rainfall can then be combined with latitude and a seasonal function to estimate soil temperature at any depth in the range 5–100 cm. The model had a root mean square deviation of 1.21–1.85°C for minimum, average, and maximum soil temperature for all weather stations in Australia (mainland and Tasmania), except for maximum soil temperature at 5 and 10 cm, where the model was less precise (3.39° and 2.52°, respectively). Data for this analysis were obtained from 32–40 Bureau of Meteorology weather stations throughout Australia and the proposed model was validated using 5-fold cross-validation.


2022 ◽  
Vol 23 (1) ◽  
pp. 68-81
Author(s):  
Syahroni Hidayat ◽  
Muhammad Tajuddin ◽  
Siti Agrippina Alodia Yusuf ◽  
Jihadil Qudsi ◽  
Nenet Natasudian Jaya

Speaker recognition is the process of recognizing a speaker from his speech. This can be used in many aspects of life, such as taking access remotely to a personal device, securing access to voice control, and doing a forensic investigation. In speaker recognition, extracting features from the speech is the most critical process. The features are used to represent the speech as unique features to distinguish speech samples from one another. In this research, we proposed the use of a combination of Wavelet and Mel Frequency Cepstral Coefficient (MFCC), Wavelet-MFCC, as feature extraction methods, and Hidden Markov Model (HMM) as classification. The speech signal is first extracted using Wavelet into one level of decomposition, then only the sub-band detail coefficient is used as the feature for further extraction using MFCC. The modeled system was applied in 300 speech datasets of 30 speakers uttering “HADIR” in the Indonesian language. K-fold cross-validation is implemented with five folds. As much as 80% of the data were trained for each fold, while the rest was used as testing data. Based on the testing, the system's accuracy using the combination of Wavelet-MFCC obtained is 96.67%. ABSTRAK: Pengecaman penutur adalah proses mengenali penutur dari ucapannya yang dapat digunakan dalam banyak aspek kehidupan, seperti mengambil akses dari jauh ke peranti peribadi, mendapat kawalan ke atas akses suara, dan melakukan penyelidikan forensik. Ciri-ciri khas dari ucapan merupakan proses paling kritikal dalam pengecaman penutur. Ciri-ciri ini digunakan bagi mengenali ciri unik yang terdapat pada sesebuah ucapan dalam membezakan satu sama lain. Penyelidikan ini mencadangkan penggunaan kombinasi Wavelet dan Mel Frekuensi Pekali Cepstral (MFCC), Wavelet-MFCC, sebagai kaedah ekstrak ciri-ciri penutur, dan Model Markov Tersembunyi (HMM) sebagai pengelasan. Isyarat penuturan pada awalnya diekstrak menggunakan Wavelet menjadi satu tahap penguraian, kemudian hanya pekali perincian sub-jalur digunakan bagi pengekstrakan ciri-ciri berikutnya menggunakan MFCC. Model ini diterapkan kepada 300 kumpulan data ucapan daripada 30 penutur yang mengucapkan kata "HADIR" dalam bahasa Indonesia. Pengesahan silang K-lipat dilaksanakan dengan 5 lipatan. Sebanyak 80% data telah dilatih bagi setiap lipatan, sementara selebihnya digunakan sebagai data ujian. Berdasarkan ujian ini, ketepatan sistem yang menggunakan kombinasi Wavelet-MFCC memperolehi 96.67%.


2021 ◽  
Author(s):  
Shazia Murad ◽  
Arwa Mashat ◽  
Alia Mahfooz ◽  
Sher Afzal Khan ◽  
Omar Barukab

Abstract Ubiquitination is the process that supports the growth and development of eukaryotic and prokaryotic organisms. It is helpful in regulating numerous functions such as the cell division cycle, caspase-mediated cell death, maintenance of protein transcription, signal transduction, and restoration of DNA damage. Because of these properties, its identification is essential to understand its molecular mechanism. Some traditional methods such as mass spectrometry and site-directed mutagenesis are used for this purpose, but they are tedious and time consuming. In order to overcome such limitations, interest in computational models of this type of identification is therefore being developed. In this study, an accurate and efficient classification model for identifying ubiquitination sites was constructed. The proposed model uses statistical moments for feature extraction along with random forest for classification. Three sets of ubiquitination are used to train and test the model. The model is assessed through 10-fold cross-validation and jackknife tests. We achieved a 10-fold accuracy of 100% for dataset-1, 99.88% for dataset-2 and 99.84% for the dataset-3, while with Jackknife test we got 100% for the dataset-1, 99.91% for dataset-2 and 99.99%. for the dataset-3. The results obtained are almost the maximum, which is far better as compared to the pre-existing models available in the literature.


Sign in / Sign up

Export Citation Format

Share Document