scholarly journals Dielectric Resonators Antennas Potential Unleashed by 3D Printing Technology: A Practical Application in the IoT Framework

Electronics ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 64
Author(s):  
Francesco Paolo Chietera ◽  
Riccardo Colella ◽  
Luca Catarinucci

One of the most promising and exciting research fields of the last decade is that of 3D-printed antennas, as proven by the increasing number of related scientific papers. More specifically, the most common and cost-effective 3D printing technologies, which have become more and more widespread in recent years, are particularly suitable for the development of dielectric resonator antennas (DRAs), which are very interesting types of antennas exhibiting good gain, excellent efficiency, and potentially very small size. After a brief survey on how additive manufacturing (AM) can be used in 3D printing of antennas and how much the manufacturing process of DRAs can benefit from those technologies, a specific example, consisting of a wideband antenna operating at 2.4 GHz and 3.8 GHz, was deeply analyzed, realized, and tested. The obtained prototype exhibited compact size (60 × 60 × 16 mm3, considering the whole antenna) and a good agreement between measured and simulated S11, with a fractional bandwidth of 46%. Simulated gain and efficiency were also quite good, with values of 5.45 dBi and 6.38 dBi for the gain and 91% and 90% for the efficiency, respectively, at 2.45 GHz and 3.6 GHz.

The Analyst ◽  
2021 ◽  
Author(s):  
Diwakar M. Awate ◽  
Cicero C. Pola ◽  
Erica Shumaker ◽  
Carmen L Gomes ◽  
Jaime Javier Juarez

Despite having widespread application in the biomedical sciences, flow cytometers have several limitations that prevent their application to point-of-care (POC) diagnostics in resource-limited environments. 3D printing provides a cost-effective approach...


Author(s):  
Dmitry Filonov ◽  
Sergey Kolen ◽  
Andrey Shmidt ◽  
Yosi Shacham‐Diamand ◽  
Amir Boag ◽  
...  

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 2134
Author(s):  
Aytug Kara ◽  
Athina Vassiliadou ◽  
Baris Ongoren ◽  
William Keeble ◽  
Richard Hing ◽  
...  

Currently, there is an unmet need to manufacture nanomedicines in a continuous and controlled manner. Three-dimensional (3D) printed microfluidic chips are an alternative to conventional PDMS chips as they can be easily designed and manufactured to allow for customized designs that are able to reproducibly manufacture nanomedicines at an affordable cost. The manufacturing of microfluidic chips using existing 3D printing technologies remains very challenging because of the intricate geometry of the channels. Here, we demonstrate the manufacture and characterization of nifedipine (NFD) polymeric nanoparticles based on Eudragit L-100 using 3D printed microfluidic chips with 1 mm diameter channels produced with two 3D printing techniques that are widely available, stereolithography (SLA) and fuse deposition modeling (FDM). Fabricated polymeric nanoparticles showed good encapsulation efficiencies and particle sizes in the range of 50–100 nm. SLA chips possessed better channel resolution and smoother channel surfaces, leading to smaller particle sizes similar to those obtained by conventional manufacturing methods based on solvent evaporation, while SLA manufactured nanoparticles showed a minimal burst effect in acid media compared to nanoparticles fabricated with FDM chips. Three-dimensional printed microfluidic chips are a novel and easily amenable cost-effective strategy to allow for customization of the design process for continuous manufacture of nanomedicines under controlled conditions, enabling easy scale-up and reducing nanomedicine development times, while maintaining high-quality standards.


Author(s):  
Vaclav Novotny ◽  
Monika Vitvarova ◽  
Michal Kolovratnik ◽  
Barbora Bryksi Stunova ◽  
Vaclav Vodicka ◽  
...  

Abstract Greater expansion of distributed power and process systems based on thermodynamic cycles with single to hundred kW scale power output is limited mainly there are not available cost-effective expanders. Turboexpanders have a perspective of high efficiency and flexibility concerning operating parameters even for the micro applications. However, they suffer from a high manufacturing cost and lead time in the development of traditional technologies (such as casting and machining processes). Additive manufacturing provides a possibility to overcome some of the issues. Manufacturing parts with complicated shapes by this technology, combining multiple components into a single part or rapid production by 3D printing for development purposes are among the prospective features with this potential. On the other hand, the 3D printing processes come with certain limitations which need to be overcome. This paper shows a design and manufacturing process of a 3 kW axial impulse air turbine working with isenthalpic drop 30 kJ/kg. Several samples to verify printing options and the turbine itself has been manufactured from stainless steel by the DMLS additive manufacturing method. Manufactured are two turbine variations regarding blade size and 3D printer settings while maintaining their specific dimensions. The turboexpanders testing method and rig is outlined. As the surface quality is an issue, several methods of post-processing of 3D printed stator and rotor blading to modify surface quality are suggested. Detailed experimental investigation is however subject of future work.


Author(s):  
Zachary A. Giannuzzi ◽  
Lucille A. Giannuzzi ◽  
Kathleen A. Gehoski ◽  
William J. Mahoney

Abstract Practice and training samples have been manufactured using 3D-printing methods. These 3D-printed samples mimic the exact geometry of focused ion beam (FIB) prepared specimens and can be used to help master ex situ and in situ lift out micromanipulation methods. An additively manufactured array of samples yields numerous samples needed for repetition and deliberate practice necessary to master the lift out and micromanipulation steps. The 3D-printed samples are cost effective and negates expensive FIB time needed to prepare FIB specimens.


2021 ◽  
Vol 144 (4) ◽  
Author(s):  
Dylan Joralmon ◽  
Evangeline Amonoo ◽  
Yizhen Zhu ◽  
Xiangjia Li

Abstract Lightweight and cost-effective polymer matrix composites (PMCs) with extraordinary mechanical performance will be a key to the next generation of diverse industrial applications, such as aerospace, electric automobile, and biomedical devices. Limpet teeth made of mineral-polymer composites have been proved as nature’s strongest material due to the unique hierarchical architectures of mineral fiber alignment. Here, we present an approach to build limpet teeth inspired structural materials with precise control of geometric morphologies of microstructures by magnetic field-assisted 3D printing (MF-3DP). α-Iron (III) oxide-hydroxide nanoparticles (α-FeOOHs) are aligned by the magnetic field during 3D printing and aligned α-FeOOHs (aFeOOHs) bundles are further grown to aligned goethite-based bundles (aGBs) by rapid thermal treatment after printing. The mechanical reinforcement of aGBs in PMCs can be modulated by adjusting the geometric morphology and alignment of α-FeOOHs encapsulated inside the 3D printed PMCs. In order to identify the mechanical enhancement mechanism, physics-based modeling, simulation, and tests were conducted, and the results further guided the design of bioinspired goethite-based PMCs. The correlation of the geometric morphology of self-assembled α-FeOOHs, curing characteristics of α-FeOOHs/polymer composite, and process parameters were identified to establish the optimal design of goethite-based PMCs. The 3D printed PMCs with aGBs show promising mechanical reinforcement compared with PMCs without aGBs. This study opens intriguing perspectives for designing high strength 3D printed PMCs on the basis of bioinspired architectures with customized configurations.


2015 ◽  
Vol 123 (4) ◽  
pp. 1070-1076 ◽  
Author(s):  
Bruce L. Tai ◽  
Deborah Rooney ◽  
Francesca Stephenson ◽  
Peng-Siang Liao ◽  
Oren Sagher ◽  
...  

In this paper, the authors present a physical model developed to simulate accurate external ventricular drain (EVD) placement with realistic haptic and visual feedbacks to serve as a platform for complete procedural training. Insertion of an EVD via ventriculostomy is a common neurosurgical procedure used to monitor intracranial pressures and/or drain CSF. Currently, realistic training tools are scarce and mainly limited to virtual reality simulation systems. The use of 3D printing technology enables the development of realistic anatomical structures and customized design for physical simulators. In this study, the authors used the advantages of 3D printing to directly build the model geometry from stealth head CT scans and build a phantom brain mold based on 3D scans of a plastinated human brain. The resultant simulator provides realistic haptic feedback during a procedure, with visualization of catheter trajectory and fluid drainage. A multiinstitutional survey was also used to prove content validity of the simulator. With minor refinement, this simulator is expected to be a cost-effective tool for training neurosurgical residents in EVD placement.


Sign in / Sign up

Export Citation Format

Share Document