Novel Low Complexity BP Decoding Algorithms for Polar Codes: Simplifying on Non-Linear Operations
The parallel nature of the belief propagation (BP) decoding algorithm for polar codes opens up a real possibility of high throughput and low decoding latency during hardware implementation. To address the problem that the BP decoding algorithm introduces high-complexity non-linear operations in the iterative messages update process, this paper proposes to simplify these operations and develops two novel low complexity BP decoding algorithms, namely, exponential BP (Exp-BP) decoding algorithm and quantization function BP (QF-BP) decoding algorithm. The proposed algorithms simplify the compound hyperbolic tangent function by using probability distribution fitting techniques. Specifically, the Exp-BP algorithm simplifies two types of non-linear operations into single non-linear operation using the piece-wise exponential model function, which can approximate the hyperbolic tangent function in the updating formula. The QF-BP algorithm eliminates non-linear operations using the non-uniform quantization in the updating formula, which is effective in reducing computational complexity. According to the simulation results, the proposed algorithms can reduce the computational complexity up to 50% in each iteration with a loss of less than 0.1 dB compared with the BP decoding algorithm, which can facilitate the hardware implementation.