scholarly journals Comparison of Bioethanol Preparation from Triticale Straw Using the Ionic Liquid and Sulfate Methods

Energies ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 1155 ◽  
Author(s):  
Małgorzata Smuga-Kogut ◽  
Bartosz Walendzik ◽  
Daria Szymanowska-Powalowska ◽  
Joanna Kobus-Cisowska ◽  
Janusz Wojdalski ◽  
...  

Triticale straw constitutes a potential raw material for biofuel production found in Poland in considerable quantities. Thus far, production of bioethanol has been based on food raw materials such as cereal seeds, sugar beets or potatoes, and the biofuel production methods developed for these lignocellulose raw materials can threaten the environment and are inefficient. Therefore, this study aimed to compare of methods for pretreatment of triticale straw using 1-ethyl-3-methylimidazolium acetate and the sulfate method in the aspect of ethanol production intended for fuel. Based on the conducted experiments it has been determined that the use of 1-ethyl-3-methylimidazolium acetate for the pretreatment of triticale straw resulted in an increase of reducing sugars after enzymatic hydrolysis and ethyl alcohol after alcoholic fermentation. Furthermore, the study compared the efficiency of enzymatic hydrolysis of triticale straw without pretreatment, after processing with ionic liquid, recycled ionic liquid and using sulfate method, allowing a comparison of these methods. The more favorable method of lignocellulose material purification was the use of ionic liquid, due to the lower amount of toxic byproducts formed during the process, and the efficiency test results of bioethanol production using pretreatment with ionic liquid and sulfate method were similar. Ionic liquid recycling after pretreatment of rye straw using lyophilization allowed us to reuse this solvent to purify rye straw, yet the efficiency of this method remained at a low level. As a result of the conducted study it was determined that the use of ionic liquid-1-ethyl-3-methylimidazolium acetate enhanced the yield of bioethanol from triticale straw from 1.60 g/dm3 after processing without pre-treatment to 10.64 g/dm3 after pre-treatment.

Fisheries ◽  
2020 ◽  
Vol 2020 (2) ◽  
pp. 113-117
Author(s):  
Olga Mezenova ◽  
Vladimir Wolkov ◽  
Larisa Baydalinova ◽  
Natalia Mezenova ◽  
Svetlana Agafonova ◽  
...  

The authors study three fractions obtained as a result of hydrolysis of smoked sprat heads (under temperature of 130oC and presser of 0.25 MPa) – fat, protein water-soluble, and protein-and-mineral ones. Waste from sprat production of two fish canning complexes of the Kaliningrad Region - “RosCon” and “Kolkhoz for the Motherland” - was used as raw material. Hydrolysis was carried out in an aqueous medium in two ways - with preliminary separation of fat and without this operation. The protein fraction was sublimated and its quantitative and qualitative indices were examined - mass yield, solubility, chemical composition and molecular fractional composition of the obtained peptide fractions were determined. The output of sublimated protein fractions is practically independent of the type of raw material and the method of pre-treatment and is 6.47.9% of the mass of raw materials. The chemical composition of protein fractions varies widely in terms of fat (1.4–8.3%), minerals (9.8–13.4%) and proteins (72.1–80.2%). The solubility of the peptide fractions ranged from 91-98%. The molecular weight assessment results showed a high content of a low molecular weight fraction of peptides with an MM of less than 10 kDa in all experimental samples (about 38%). This indicates a high digestibility and biological value of the obtained peptide compositions. Sublimated peptide compositions had typical organoleptic characteristics, pleasant aroma and taste of smoked fish. Ключевые


2019 ◽  
Vol 965 ◽  
pp. 117-123
Author(s):  
Igor Lapenda Wiesberg ◽  
José Luiz de Medeiros ◽  
Ofélia de Queiroz Fernandes Araújo

Chemical conversion of carbon dioxide (CO2) to methanol has the potential to address two relevant sustainability issues: economically feasible replacement of fossil raw materials and avoidance of greenhouse gas emissions. However, chemical stability of CO2 is a challenging impediment to conversion, requiring harsh reaction conditions at the expense of increased energy input, adding capital, operational and environmental costs. This work evaluates two innovative chemical conversion of CO2 to methanol: the indirect conversion, which uses synthesis gas produced by bi-reforming as intermediate, and the direct conversion, via hydrogenation. Process simulations are used to obtain mass and energy balances, needed to support economic analyses. Due to the uncertainties in the raw material prices, including CO2 and hydrogen (H2), its limits for economic viability are estimated and sensitivity analyzes are carried in predetermined prices (base cases). It is considered the scenario of free CO2 available in atmospheric conditions, as in a bioethanol industry, but the sensitivity analyses show the results for other scenarios, as in a CO2 rich natural gas, in which the cost of processing CO2 is zero. The economic analyses show that hydrogenation can be feasible if hydrogen prices are lower than 1000 US$/t, while the indirect route is viable only for cheap sources of natural gas below 3.7 US$/MMBtu. The CO2 pre-treatment costs are not as sensible as the others raw materials.


Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4288 ◽  
Author(s):  
Alessandro Bertini ◽  
Mattia Gelosia ◽  
Gianluca Cavalaglio ◽  
Marco Barbanera ◽  
Tommaso Giannoni ◽  
...  

Cardoon (Cynara cardunculus) is a promising crop from which to obtain oilseeds and lignocellulosic biomass. Acid-catalyzed steam explosion is a thermochemical process that can efficiently pre-treat lignocellulosic biomass. The drawback is the production of a high number of carbohydrate degradation products in the liquid fraction that could inhibit microbial growth. In this work, the lignocellulosic biomass of cardoon, gathered from a dedicated field, were used as the raw material for the production of fermentable monosaccharides by employing acid-catalyzed steam explosion. The raw material was pre-soaked with a dilute 1% (w/w) sulfuric acid solution and then subjected to steam explosion under three different severity conditions. The recovered slurry was separated into solid and liquid fractions, which were individually characterized to determine total carbohydrate and inhibitor concentrations. The slurry and the washed solid fraction underwent enzymatic hydrolysis to release glucose and pentose monosaccharides. By conducting the pre-treatment at 175 °C for 35 min and hydrolyzing the obtained slurry, a yield of 33.17 g of monosaccharides/100 g of cardoon was achieved. At the same conditions, 4.39 g of inhibitors/100 g of cardoon were produced.


2015 ◽  
Vol 43 (2) ◽  
pp. 85-89 ◽  
Author(s):  
Gábor Megyeri ◽  
Nándor Nemestóthy ◽  
Milan Polakovic ◽  
Katalin Bélafi-Bakó

Abstract Cheap, renewable lignocellulosic materials are relevant to the future of biofuel production. Wood and agricultural wastes (e.g. straw, corn stover) provide a raw material source that cannot be used for human consumption, thus biofuels from such sources do not threaten the food supply. The aim of the work was to carry out the pre-treatment and hydrolysis of lignocellulosic material in the same ionic liquid solvent (1-n-butyl-3- methyl-imidazolium-chloride, [Bmim]Cl), using ground wheat straw and a mixture of corn (Zea mays) leaf and stover, as substrates. Our measurements show that it is possible to achieve an acceptable glucose content from the cellulose by applying Cellic® CTec2 and Cellic® HTec2 enzyme complexes.


Author(s):  
Luthfi Assadad ◽  
Bagus Sediadi Bandol Utomo ◽  
Rodiah Nurbaya Sari

Biofuel is one of alternative fossil fuel, in which the raw materials come from biological resources.One of the raw materials for biofuel production is microalgae. Microalgae grows rapidly, does notcompete with food for humans, and needs small areas to cultivate. Utilization of microalgae forbiofuel research nowadays is focusing on biodiesel production, but actually microalgae can beused to produce other biofuels such as bioethanol. The carbohydrate content of the microalgaecan be converted into glucose and fermented into alcohol. Carbohydrate content of the microalgaeis about 5.0–67.9%, which could produce bioethanol up to 38%. A harmony between bioethanoland biodiesel production from microalgae is needed for the optimum utilization of microalgae.Bioethanol production from microalgae can be done using de-oiled microalgae.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Małgorzata Smuga-Kogut ◽  
Daria Szymanowska-Powałowska ◽  
Roksana Markiewicz ◽  
Tomasz Piskier ◽  
Tomasz Kogut

AbstractProduction of ethanol from lignocellulosic biomass is considered the most promising proposition for developing a sustainable and carbon–neutral energy system. The use of renewable raw materials and variability of lignocellulosic feedstock generating hexose and pentose sugars also brings advantages of the most abundant, sustainable and non-food competitive biomass. Great attention is now paid to agricultural wastes and overgrowing plants as an alternative to fast-growing energetic crops. The presented study explores the use of stinging nettle stems, which have not been treated as a source of bioethanol. Apart from being considered a weed, stinging nettle is used in pharmacy or cosmetics, yet its stems are always a non-edible waste. Therefore, the aim was to evaluate the effectiveness of pretreatment using imidazolium- and ammonium-based ionic liquids, enzymatic hydrolysis, fermentation of stinging nettle stems, and comparison of such a process with giant miscanthus. Raw and ionic liquid-pretreated feedstocks of stinging nettle and miscanthus were subjected to compositional analysis and scanning electron microscopy to determine the pretreatment effect. Next, the same conditions of enzymatic hydrolysis and fermentation were applied to both crops to explore the stinging nettle stems potential in the area of bioethanol production. The study showed that the pretreatment of both stinging nettle and miscanthus with imidazolium acetates allowed for increased availability of the critical lignocellulosic fraction. The use of 1-butyl-3-methylimidazolium acetate in the pretreatment of stinging nettle allowed to obtain very high ethanol concentrations of 7.3 g L−1, with 7.0 g L−1 achieved for miscanthus. Results similar for both plants were obtained for 1-ethyl-3-buthylimidazolium acetate. Moreover, in the case of ammonium ionic liquids, even though they have comparable potential to dissolve cellulose, it was impossible to depolymerize lignocellulose and extract lignin. Furthermore, they did not improve the efficiency of the hydrolysis process, which in turn led to low alcohol concentration. Overall, from the presented results, it can be assumed that the stinging nettle stems are a very promising bioenergy crop.


2020 ◽  
Vol 8 (1) ◽  
pp. 31-37
Author(s):  
Shaaban Z. Omar ◽  
Ayad H. Hasan ◽  
Ivo Lalov

Biogas and fuel ethanol are renewable energy sources, can be produced from complex organic materials that are decomposed by microorganisms in the anaerobic digestion method. Potato peels (PPs) and mixed Lolium perenne and Dactylis glomerata grasses were assessed as a potential substrate for biomethanation in a batch method under mesophilic condition (35°C) and ethanol fermentation. The first approach of this work was focused on pretreatment of PPs using acidic and enzymatic hydrolysis to produce biogas and ethanol fermentation using Saccharomyces cerevisiae and Safbrew S-33. These experiments proved that enzymatic hydrolysis produced 1.2 g/L of ethanol involved 115 h of fermentation and 665 ml/h of biogas after 451 h of biomethanation, this was more than the outcomes of acidic treatment. The second approach was concentrated on ability of biogas and ethanol production from mixed grasses treated with different acid concentrations that produced 0.16 g/L ethanol over 8 days of fermentation and 500 ml/h of biogas after 13 days of methanation technique. In general, the results pointed out that PPs and combined grasses can be used as potential substrates with raw materials for biogas and ethanol production.


2018 ◽  
Vol 12 (1) ◽  
Author(s):  
I. Bilenka ◽  
Ya. Golinskaya ◽  
N. Dzyuba ◽  
H. Martirosian

In the work, various technological methods are presented of preliminary processing of celery and parsnip roots to prevent their darkening during cooking in restaurants. These methods are: immersing in a citric acid solution (c = 0.05 %, 0.1 %, 0.15 %), in solution NaCl (c = 0. 5%, 1 %, 2 %), and microwave processing in various modes. The activity of peroxidase, polyphenol oxidase, and ascorbate oxidase enzymes of root crops in the varietal section is also determined. Fresh white roots were selected as research objects: celery of the varieties Yablucnyy and Diamant, and parsnip of the varieties Student and Kruhlyy. It was revealed that polyphenol oxidase shows the highest activity. In order to inactivate the above-stated oxidoreductase, different methods of treating white roots were compared, too. The lowest oxidative enzymes activity was characteristic of the roots of the Diamant varieties and the parsnip roots of the Student variety, which were selected for further work. Studies have been carried out on changes in the mass fraction of L-ascorbic acid during steam blasting and microwave processing in different modes. It is proved that the treatment of white roots with ultra high frequency irradiation at 650 W for 1 minute is optimal. Such treatment allowes preventing the darkening of the raw material after its peeling due to the action of oxidation-reducing enzymes. It also allows preserving L-ascorbic acid by 64.6 % and 65.0 % in the roots of celery and parsnip, respectively. The distribution of polyphenol oxidase activity in the celery and parsnip root crop is analyzed. The results of the work can be used in preparation of dishes with the use of white roots in restaurants in order to improve technological techniques during processing of raw materials into finished products, improve its quality, and preserve L-ascorbic acid, as well as expand the range of culinary products based on spicy aromatic raw materials.


2022 ◽  
Vol 16 (4) ◽  
pp. 59-67
Author(s):  
Dmitriy Prosvirnikov ◽  
Denis Tuncev ◽  
Bulat Ziganshin

The article is devoted to the development of technology and equipment for the production of bioethanol from agricultural plant waste, activated by the steam explosion method. The value and novelty of research lies in obtaining new data on the effective acidic and enzymatic hydrolysis of activated raw materials, and developing a technology for the conversion of plant raw materials into bioethanol. The studies were carried out on the basis of the Department of Wood Materials Processing of Kazan National Research Technological University (Republic of Tatarstan, Kazan). A pilot plant for the production of bioethanol and the principle of its operation are presented. Pine wood waste and wheat straw (collected in Kukmor region of the Republic of Tatarstan in the period August-September 2021) were used as raw materials. Steam-explosive activation of raw materials was carried out at temperatures of 165 ⁰C and 210 ⁰C for 5 minutes. Acid hydrolysis parameters: H2SO4 concentration - 0.5% and 1.5%, hydromodule 1:15, hydrolysis temperature - 187⁰C, hydrolysis duration - 5 hours. Enzymatic hydrolysis parameters: preparation - Cellulox-A (OOO PO Sibbiopharm, Russia) - 6 and 12 g/kg of raw material, hydrolysis temperature - 45 ⁰C, substrate pH 4.7 (acetate buffer), raw material concentration in the substrate 33 g/l, the duration of hydrolysis is 72 h. Alcoholic fermentation of hydrolysates was carried out at 32-34⁰C using Saccharomyces cerevisiae yeast, fermentation duration 7 h, yeast concentration 25 g/l. The bioethanol yield in % of reducing substances was recalculated after determining the mass yield. It is concluded that the vapor-explosive activation of pine wood at a temperature of 210 ºC makes it possible to obtain by acid hydrolysis and anaerobic fermentation of reducing substances up to 0.26 kg (0.33 l) of ethanol from 1 kg of activated raw materials, and activation of wheat straw at the same temperature allows obtaining up to 0.172 kg (0.218 l) ethanol with 1 kg of activated straw


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 2014
Author(s):  
Małgorzata Smuga-Kogut ◽  
Leszek Bychto ◽  
Bartosz Walendzik ◽  
Judyta Cielecka-Piontek ◽  
Roman Marecik ◽  
...  

Background: Common buckwheat (Fagopyrum esculentum Moench) is an annual spring-emerging crop that is classified among the dicotyledons, due to the manner of its cultivation, use, and chemical composition of seeds. The use of buckwheat straw for energy purposes—for example, for the production of second generation bioethanol—might enable its wider application and increase the cost-effectiveness of tillage. Methods: In this study, we examined the usability of buckwheat straw for the production of bioethanol. We pretreated the raw material with ionic liquids and subsequently performed enzymatic hydrolysis and alcoholic fermentation. The obtained chemometric data were analyzed using the Partial Least Squares (PLS) regression model. PLS regression in combination with spectral analysis within the near-infrared (NIR) spectrum allowed for the rapid determination of the amount of cellulose in the raw material and also provided information on the changes taking place in its structure. Results: We obtained good results for the combination of 1-ethyl-3-methylimidazolium acetate as the ionic liquid and Cellic CTec2 as the enzymatic preparation for the pretreatment of buckwheat straw. The highest concentration of glucose following 72 h of enzymatic hydrolysis was found to be around 5.5 g/dm3. The highest concentration of ethanol (3.31 g/dm3) was obtained with the combination of 1-butyl-3-methylimidazolium acetate for the pretreatment and cellulase from Trichoderma reesei for enzymatic hydrolysis. Conclusions: In summary, the efficiency of the fermentation process is strictly associated with the pool of available fermenting sugars, and it depends on the type of ionic liquid used during the pretreatment and on the enzymatic preparation. It is possible to obtain bioethanol from buckwheat straw using ionic liquid for pretreatment of the raw material prior to the enzymatic hydrolysis and alcoholic fermentation of the material.


Sign in / Sign up

Export Citation Format

Share Document