scholarly journals Impact on Reduction of Pollutant Emissions from Passenger Cars when Replacing Euro 4 with Euro 6d Diesel Engines Considering the Altitude Influence

Energies ◽  
2019 ◽  
Vol 12 (7) ◽  
pp. 1278 ◽  
Author(s):  
José Serrano ◽  
Pedro Piqueras ◽  
Ali Abbad ◽  
Roberto Tabet ◽  
Stefan Bender ◽  
...  

The impact of Euro 4 compression ignition engines over the air quality in Europe has been analyzed in this work by comparing them with Euro 6d emissions regulation. The Euro 6d diesel engine has been chosen as the preferred replacement according to its advantages in global warming potential (GWP) emissions, like methane hydrocarbons (MHC) and CO2, with respect to Euro 6d petrol-based powertrains. The motivation for this study is that the effects of the emissions reduction policies, as the implementation of the regulation Euro 6d, are necessarily limited due to the great number of passenger cars still in circulation that were homologated under Euro 4 or older standards. To address the impact of the old vehicle pool, a Worldwide harmonized Light-vehicles Test Cycle (WLTC) has been used to analyze the performance and pollutant emissions of a Euro 4 diesel engine in altitude conditions. This driving cycle and engine are considered as a baseline for the subsequent discussion, where the altitude plays a key role because of the European geography. It forces passenger cars to drive over sea level during a significant number of trips. Thus, an analysis of how significant would be the impact of energy policies promoting the substitution of the pre-Euro 5 diesel fleet (>10 years old) by modern Euro 6d engines in the short term on the pollutants and GWP emissions reduction is presented.

Author(s):  
Paramvir Singh ◽  
Varun Goel ◽  
SR Chauhan

Biodiesel is a promising fuel which shows potential and gradually received attention as a best alternate feedstock for diesel engine. Previous investigations have shown that use of double biofuels in a diesel engine can be a promising aspect for complete elimination of diesel from compression ignition engines which will decrease our dependency on fossil fuels. The tribological performance of injection system is primarily based on the lubricity characteristics of the fuel. So, it is imperative to a more diversified research about the impact of using double biofuels in engine. In the present investigation, different biodiesel-oil blends were investigated using the ASTM D6079 by the reciprocatory friction monitor. The effect of temperature variation on lubricity characteristics was also studied. The biodiesel-oil blends shows improvement in results as compared to diesel. Biodiesel is prone to oxidation due to availability of unsaturation in their moieties. The effects of oxidation on lubricity characteristics were also studied. It was also found that the operating conditions collectively affected the lubricity characteristics of tested feedstocks.


Author(s):  
Katarzyna Bebkiewicz ◽  
Zdzisław Chłopek ◽  
Hubert Sar ◽  
Krystian Szczepański

AbstractEnergy consumption and pollutant emission aspects were ascertained for cars under traffic conditions: in cities, outside cities, on motorways and expressways, with the use of data from the inventory of emissions from road transport in Poland in 2018. The values of characteristics of energy consumption under model traffic conditions, as well as pollutant emissions and energy consumption of cars with internal combustion engines and cars with electric motors, constituted the basis for further analyses and conclusions about the characteristics of the vehicles under the study in terms of energy consumption and pollutant emissions. As a result of the research, it was found in the case of the use of electric drives, a very significant decrease in energy consumption—by 70% and the emission of non-methane volatile organic compounds—at the level of 90%. In the case of the emission of nitrogen oxides, there is a great advantage in relation to cars with compression-ignition engines, while the emission of nitrogen oxides from cars with spark-ignition engines is about two times lower. It was found that the emission of particulate matter for electric cars is about three times higher than for cars with compression-ignition engines and almost six times higher than for cars with spark-ignition engines. On the other hand, the impact on carbon dioxide emissions is small—less than 10%.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1107
Author(s):  
Stefano d’Ambrosio ◽  
Roberto Finesso ◽  
Gilles Hardy ◽  
Andrea Manelli ◽  
Alessandro Mancarella ◽  
...  

In the present paper, a model-based controller of engine torque and engine-out Nitrogen oxide (NOx) emissions, which was previously developed and tested by means of offline simulations, has been validated on a FPT F1C 3.0 L diesel engine by means of rapid prototyping. With reference to the previous version, a new NOx model has been implemented to improve robustness in terms of NOx prediction. The experimental tests have confirmed the basic functionality of the controller in transient conditions, over different load ramps at fixed engine speeds, over which the average RMSE (Root Mean Square Error) values for the control of NOx emissions were of the order of 55–90 ppm, while the average RMSE values for the control of brake mean effective pressure (BMEP) were of the order of 0.25–0.39 bar. However, the test results also highlighted the need for further improvements, especially concerning the effect of the engine thermal state on the NOx emissions in transient operation. Moreover, several aspects, such as the check of the computational time, the impact of the controller on other pollutant emissions, or on the long-term engine operations, will have to be evaluated in future studies in view of the controller implementation on the engine control unit.


Author(s):  
Alex Oliveira ◽  
Junfeng Yang ◽  
Jose Sodre

Abstract This work evaluated the effect of cooled exhaust gas recirculation (EGR) on fuel consumption and pollutant emissions from a diesel engine fueled with B8 (a blend of biodiesel and Diesel 8:92%% by volume), experimentally and numerically. Experiments were carried out on a Diesel power generator with varying loads from 5 kW to 35 kW and 10% of cold EGR ratio. Exhaust emissions (e.g. THC, NOX, CO etc.) were measured and evaluated. The results showed mild EGR and low biodiesel content have minor impact of engine specific fuel consumption, fuel conversion efficiency and in-cylinder pressure. Meanwhile, the combination of EGR and biodiesel reduced THC and NOX up to 52% and 59%, which shows promising effect on overcoming the PM-NOX trade-off from diesel engine. A 3D CFD engine model incorporated with detailed biodiesel combustion kinetics and NOx formation kinetics was validated against measured in-cylinder pressure, temperature and engine-out NO emission from diesel engine. This valid model was then employed to investigate the in-cylinder temperature and equivalence ratio distribution that predominate NOx formation. The results showed that the reduction of NOx emission by EGR and biodiesel is obtained by a little reduction of the local in-cylinder temperature and, mainly, by creating comparatively rich combusting mixture.


2021 ◽  
pp. 146808742110395
Author(s):  
José Galindo ◽  
Vicente Dolz ◽  
Javier Monsalve-Serrano ◽  
Miguel Angel Bernal Maldonado ◽  
Laurent Odillard

The aftertreatment systems used in internal combustion engines need high temperatures for reaching its maximum efficiency. By this reason, during the engine cold start period or engine restart operation, excessive pollutant emissions levels are emitted to the atmosphere. This paper evaluates the impact of using a new cylinder deactivation strategy on a Euro 6 turbocharged diesel engine running under cold conditions (−7°C) with the aim of improving the engine warm-up process. This strategy is evaluated in two parts. First, an experimental study is performed at 20°C to analyze the effect of the cylinder deactivation strategy at steady-state and during an engine cold start at 1500 rpm and constant load. In particular, the pumping losses, pollutant emissions levels and engine thermal efficiency are analyzed. In the second part, the engine behavior is analyzed at steady-state and transient conditions under very low ambient temperatures (−7°C). In these conditions, the results show an increase of the exhaust temperatures of around 100°C, which allows to reduce the diesel oxidation catalyst light-off by 250 s besides of reducing the engine warm-up process in approximately 120 s. This allows to reduce the CO and HC emissions by 70% and 50%, respectively, at the end of the test.


Author(s):  
Gong Chen

It is always desirable for a heavy-duty compression-ignition engine, such as a diesel engine, to possess a capability of using alternate liquid fuels without significant hardware modification to the engine baseline. Because fuel properties vary between various types of liquid fuels, it is important to understand the impact and effects of the fuel properties on engine operating and output parameters. This paper intends and attempts to achieve that understanding and to predict the qualitative effects by studying analytically and qualitatively how a heavy-duty compression-ignition engine would respond to the variation of fuel properties. The fuel properties considered in this paper mainly include the fuel density, compressibility, heating value, viscosity, cetane number, and distillation temperature range. The qualitative direct and end effects of the fuel properties on engine bulk fuel injection, in-cylinder combustion, and outputs are analyzed and predicted. Understanding these effects can be useful in analyzing and designing a compression-ignition engine for using alternate liquid fuels.


2021 ◽  
Vol 9 (2) ◽  
Author(s):  
Mohammed A. Fayad ◽  

Engine injection strategy and renewable fuel both can improve nitrogen oxides (NOX) and smoke/soot emissions in a common-rail compression ignition (CI) diesel engine. The effects of different postinjection (PI) timings (15, 30, and 45) after top dead center (aTDC) and injection pressures (550 and 650 bar) on pollutant emissions and smoke/soot emissions were investigated for combustion of a renewable fuel (soybean biodiesel). The results showed that the levels of carbon monoxide (CO), hydrocarbons (HCs), and NOX are reduced from the combustion of soybean biodiesel compared to the diesel fuel combustion for different injection strategy. Besides, NOX emission is clearly reduced with retarded PI timing, especially at 45°. It is found that the increasing injection pressure reduced gaseous emissions for both fuels. The combination between biodiesel fuel and injection strategy can provide meaningful improvements in pollutant emissions, as well as enhance the exhaust temperature compared to the diesel fuel. With biodiesel fueling, smoke/soot emissions were reduced from biodiesel combustion (by 19.7%) under different fuel injection timings and pressures rather than from the diesel fuel combustion (by 12.2%).


2019 ◽  
pp. 146808741986701 ◽  
Author(s):  
Santiago Molina ◽  
Antonio García ◽  
Javier Monsalve-Serrano ◽  
David Villalta

From the different power plants, the compression ignition diesel engines are considered the best alternative to be used in the transport sector due to its high efficiency. However, the current emission standards impose drastic reductions for the main pollutants, that is, NO x and soot, emitted by this type of engines. To accomplish with these restrictions, alternative combustion concepts as the premixed charge compression ignition are being investigated nowadays. The objective of this work is to evaluate the impact of different fuel injection strategies on the combustion performance and engine-out emissions of the premixed charge compression ignition combustion regime. For that, experimental measurements were carried out in a single-cylinder medium-duty compression ignition diesel engine at low-load operation. Different engine parameters as the injection pattern timing, main injection timing and main injection fuel quantity were sweep. The best injection strategy was determined by means of a methodology based on the evaluation of a merit function. The results suggest that the best injection strategy for the low-load premixed charge compression ignition operating condition investigated implies using a high injection pressure and a triple-injection event with a delayed main injection with almost 15% of the total fuel mass injected.


Sign in / Sign up

Export Citation Format

Share Document