scholarly journals Wavelet Scale Variance Analysis of Wind Extremes in Mountainous Terrains

Energies ◽  
2019 ◽  
Vol 12 (16) ◽  
pp. 3048 ◽  
Author(s):  
Telesca ◽  
Guignard ◽  
Helbig ◽  
Kanevski

The 10-min average wind speed series recorded at 130 stations distributed rather homogeneously in the territory of Switzerland are investigated. Fixing a percentile-based threshold of the wind speed distribution, a wind extreme is defined as the duration of the sequence of consecutive wind values above the threshold. This definition allows to analyze the sequence of extremes as a temporal point process marked by their duration. Representing the sequence of wind extremes by the inter-extreme interval series, the wavelet variance, a useful tool to investigate the variance of a time series across scales, was applied in order to find a link between the wavelet scales and several topographic parameters. Our findings suggest that the mean duration of wind extremes and mean inter-extreme time are positively correlated and that such relationship depends on the threshold of the wind speed. Furthermore, the threshold of the wind speed distribution correlates best with a terrain parameter related to the Laplacian of terrain elevations; and, in particular, for wavelet scales less than 3, the terrain exposure may explain the formation of extreme wind speeds.

2013 ◽  
Vol 1 (1) ◽  
pp. 10-15
Author(s):  
Kamaruzzaman Sopian ◽  
Tamer Khatib

 In this paper, the wind energy potential in Malaysia is examined by analyzing hourly wind speed data for nine coastal sites namely Bintulu, Kota Kinabalu, Kuala Terengganu, Kuching, Kudat, Mersing, Sandakan, Tawau and Pulau Langkawi. The monthly averages of wind speed and wind energy are calculated. Moreover, the wind speed distribution histogram is constructed for these sites. The results showed that the average wind speed for these sites is in the range of (1.8-2.9) m/s while the annual energy of the wind hitting a wind turbine with a 1 m2 swept area is in the range of (15.4-25.2) kWh/m2.annum. This paper provides a data bank for wind energy for Malaysia.


2013 ◽  
Vol 1 (1) ◽  
pp. 10-15
Author(s):  
Kamaruzzaman Sopian ◽  
Tamer Khatib

 In this paper, the wind energy potential in Malaysia is examined by analyzing hourly wind speed data for nine coastal sites namely Bintulu, Kota Kinabalu, Kuala Terengganu, Kuching, Kudat, Mersing, Sandakan, Tawau and Pulau Langkawi. The monthly averages of wind speed and wind energy are calculated. Moreover, the wind speed distribution histogram is constructed for these sites. The results showed that the average wind speed for these sites is in the range of (1.8-2.9) m/s while the annual energy of the wind hitting a wind turbine with a 1 m2 swept area is in the range of (15.4-25.2) kWh/m2.annum. This paper provides a data bank for wind energy for Malaysia.


Arsitektura ◽  
2018 ◽  
Vol 16 (2) ◽  
pp. 231 ◽  
Author(s):  
Boby Rahman ◽  
Asri Dinapradipta ◽  
Ima Defiana

<p class="Abstract"><em>The increase of waterfront buildings’ height has an effect on wind distribution in the urban canyon. On the other hand, the distribution of wind is needed in providing thermal balance in urban environments, especially in urban waterfront coastal areas. This study aimed at observing and analyzing the effect of building height (H) on waterfront buildings and aspects of the length to width (L/W) ratio related to the length of the canyon design. The observation was focused on the wind speed distribution. The research was an experimental research using ENVI-met V3.1 software for simulation. The results indicated that short canyon (low L/W value) results in lower wind speed changes compared to that of long one (higher L/W value) at all altitude levels. The short canyons provided more stability in wind speed reduction. The 15 meters wide of canyon design contributed to the highest average wind speed. Overall, the existence of a barrier building would result in a negative area of air flow and create a calm area within the distance of  ± 50 meters.</em></p><em></em>


2018 ◽  
Vol 16 (2) ◽  
pp. 153-157
Author(s):  
Atanas Atanasov ◽  
Tanya Pehlivanova

The article presents the results of wind potential research in the area of Faculty of Technics and Technologies of Yambol, Trakia University of Stara Zagora, Bulgaria. Measurements were made in the period from 01.06.2017 to 27.11.2017. For both seasons - summer and autumn the average wind speed and wind speed distribution are determined. The wind roses, which give a visual idea of the distribution of wind potential in different directions are build. Conclusions for the possibility of using the wind potential for extracting electricity are made.


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2796
Author(s):  
Andrzej Osuch ◽  
Ewa Osuch ◽  
Stanisław Podsiadłowski ◽  
Piotr Rybacki

In the introduction to this paper, the characteristics of Góreckie lake and the construction and operation of the wind-driven pulverizing aerator are presented. The purpose of this manuscript is to determine the efficiency of the pulverizing aerator unit in the windy conditions of Góreckie Lake. The efficiency of the pulverization aerator depends on the wind conditions at the lake. It was necessary to conduct thorough research to determine the efficiency of water flow through the pulverization segment (water pump). It was necessary to determine the rotational speed of the paddle wheel, which depended on the average wind speed. Throughout the research period, measurements of hourly average wind speed were carried out. It was possible to determine the efficiency of the machine by developing a dedicated mathematical model. The latest method was used in the research, consisting of determining the theoretical volumetric flow rates of water in the pulverizing aerator unit, based on average hourly wind speeds. Pulverization efficiency under the conditions of Góreckie Lake was determined based on 6600 average wind speeds for spring, summer and autumn, 2018. Based on the model, the theoretical efficiency of the machine was calculated, which, under the conditions of Góreckie Lake, amounted to 75,000 m3 per year.


2010 ◽  
Vol 7 (4) ◽  
pp. 5719-5755 ◽  
Author(s):  
O. Wurl ◽  
E. Wurl ◽  
L. Miller ◽  
K. Johnson ◽  
S. Vagle

Abstract. Results from a study of surfactants in the sea-surface microlayer (SML) in different regions of the ocean (subtropical, temperate, polar) suggest that this interfacial layer between the ocean and atmosphere covers the ocean's surface to a significant extent. Threshold values at which primary production acts as a significant source of natural surfactants have been derived from the enrichment of surfactants in the SML relative to underlying water and local primary production. Similarly, we have also derived a wind speed threshold at which the SML is disrupted. The results suggest that surfactant enrichment in the SML is typically greater in oligotrophic regions of the ocean than in more productive waters. Furthermore, the enrichment of surfactants persisted at wind speeds of up to 10 m s−1 without any observed depletion above 5 m s−1. This suggests that the SML is stable enough to exist even at the global average wind speed of 6.6 m s−1. Global maps of primary production and wind speed are used to estimate the ocean's SML coverage. The maps indicate that wide regions of the Pacific and Atlantic Oceans between 30° N and 30° S are more significantly affected by the SML than northern of 30° N and southern of 30° S due to higher productivity (spring/summer blooms) and wind speeds exceeding 12 m s−1 respectively.


2019 ◽  
Vol 4 (2) ◽  
pp. 343-353 ◽  
Author(s):  
Tyler C. McCandless ◽  
Sue Ellen Haupt

Abstract. Wind power is a variable generation resource and therefore requires accurate forecasts to enable integration into the electric grid. Generally, the wind speed is forecast for a wind plant and the forecasted wind speed is converted to power to provide an estimate of the expected generating capacity of the plant. The average wind speed forecast for the plant is a function of the underlying meteorological phenomena being predicted; however, the wind speed for each turbine at the farm is also a function of the local terrain and the array orientation. Conversion algorithms that assume an average wind speed for the plant, i.e., the super-turbine power conversion, assume that the effects of the local terrain and array orientation are insignificant in producing variability in the wind speeds across the turbines at the farm. Here, we quantify the differences in converting wind speed to power at the turbine level compared with a super-turbine power conversion for a hypothetical wind farm of 100 2 MW turbines as well as from empirical data. The simulations with simulated turbines show a maximum difference of approximately 3 % at 11 m s−1 with a 1 m s−1 standard deviation of wind speeds and 8 % at 11 m s−1 with a 2 m s−1 standard deviation of wind speeds as a consequence of Jensen's inequality. The empirical analysis shows similar results with mean differences between converted wind speed to power and measured power of approximately 68 kW per 2 MW turbine. However, using a random forest machine learning method to convert to power reduces the error in the wind speed to power conversion when given the predictors that quantify the differences due to Jensen's inequality. These significant differences can lead to wind power forecasters overestimating the wind generation when utilizing a super-turbine power conversion for high wind speeds, and indicate that power conversion is more accurately done at the turbine level if no other compensatory mechanism is used to account for Jensen's inequality.


2022 ◽  
Author(s):  
Teng Ma ◽  
Wei Cui ◽  
Lin Zhao ◽  
Yejun Ding ◽  
Genshen Fang ◽  
...  

Abstract In addition to common synoptic wind system, the mountainous terrain forms a local thermally driven wind system, which makes the mountain wind system have strong terrain dependence. Therefore, in order to estimate the reliable design wind speeds for structural safety, the samples for extreme wind speeds for certain return periods at mountainous areas can only come from field measurements at construction site. However, wind speeds measuring duration is usually short in real practice. This work proposes a novel method for calculating extreme wind speeds in mountainous areas by using short-term field measurement data and long-term nearby meteorological observatory data. Extreme wind speeds in mountainous area are affected by mixed climates composed by local-scale wind and large scale synoptic wind. The local winds can be recorded at construction site with short observatory time, while the extreme wind speeds samples from synoptic wind climate from nearby meteorological station with long observatory time is extracted for data augmentation. The bridge construction site at Hengduan Mountains in southwestern China is taken as an example in this study. A 10-month dataset of field measurement wind speeds is recorded at this location. This study firstly provides a new method to extract wind speed time series of windstorms. Based on the different windstorm features, the local and synoptic winds are separated. Next, the synoptic wind speeds from nearby meteorological stations are converted and combined with local winds to derive the extreme wind speeds probability distribution function. The calculation results shows that the extreme wind speed in the short return period is controlled by the local wind system, and the long-period extreme wind speed is determined by the synoptic wind system in the mountain area.


Author(s):  
Yujie Lin ◽  
Yumeng Jin ◽  
Hong Jin

As residential environment science advances, the environmental quality of outdoor microclimates has aroused increasing attention of scholars majoring in urban climate and built environments. Taking the microclimate of a traditional residential area in a severe cold city as the study object, this study explored the influence of spatial geometry factors on the microclimate of streets and courtyards by field measurements, then compared the differences in microclimate of distinct public spaces. The results are as follows. (1) The temperature of a NE-SW (Northeast-Southwest) oriented street was higher than that of a NW-SE (Northwest-Southeast) oriented street in both summer and winter, with an average temperature difference of 0.7–1.4 °C. The wind speeds in the latter street were slower, and the difference in average wind speed was 0.2 m/s. (2) In the street with a higher green coverage ratio, the temperature was much lower, a difference that was more obvious in summer. The difference in mean temperature was up to 1.2 °C. The difference in wind speed between the two streets was not obvious in winter, whereas the wind speed in summer was significantly lower for the street with a higher green coverage ratio, and the difference in average wind speed was 0.7 m/s. (3) The courtyards with higher SVF (sky view factor) had higher wind speeds in winter and summer, and the courtyards with larger SVF values had higher temperatures in summer, with an average temperature difference of 0.4 °C. (4) When the spaces had the same SVF values and green coverage ratios, the temperature of the street and courtyard were very similar, in both winter and summer. The wind speed of the street was significantly higher than the courtyard in summer, and the wind speed difference was 0.4 m/s.


Sign in / Sign up

Export Citation Format

Share Document