jensen’s inequality
Recently Published Documents


TOTAL DOCUMENTS

302
(FIVE YEARS 45)

H-INDEX

20
(FIVE YEARS 2)

Information ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 39
Author(s):  
Neri Merhav

In this work, we propose both an improvement and extensions of a reverse Jensen inequality due to Wunder et al. (2021). The new proposed inequalities are fairly tight and reasonably easy to use in a wide variety of situations, as demonstrated in several application examples that are relevant to information theory. Moreover, the main ideas behind the derivations turn out to be applicable to generate bounds to expectations of multivariate convex/concave functions, as well as functions that are not necessarily convex or concave.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 202
Author(s):  
Josip Pečarić ◽  
Jurica Perić ◽  
Sanja Varošanec

We give a refinement of the converse Hölder inequality for functionals using an interpolation result for Jensen’s inequality. Additionally, we obtain similar improvements of the converse of the Beckenbach inequality. We consider the converse Minkowski inequality for functionals and of its continuous form and give refinements of it. Application on integral mixed means is given.


2022 ◽  
Vol 7 (4) ◽  
pp. 5328-5346
Author(s):  
Tareq Saeed ◽  
◽  
Muhammad Adil Khan ◽  
Hidayat Ullah ◽  

<abstract><p>The principal aim of this research work is to establish refinements of the integral Jensen's inequality. For the intended refinements, we mainly use the notion of convexity and the concept of majorization. We derive some inequalities for power and quasi–arithmetic means while utilizing the main results. Moreover, we acquire several refinements of Hölder inequality and also an improvement of Hermite–Hadamard inequality as consequences of obtained results. Furthermore, we secure several applications of the acquired results in information theory, which consist bounds for Shannon entropy, different divergences, Bhattacharyya coefficient, triangular discrimination and various distances.</p></abstract>


Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2964
Author(s):  
Ahmed A. El-Deeb ◽  
Jan Awrejcewicz

The main objective of the present article is to prove some new ∇ dynamic inequalities of Hardy–Hilbert type on time scales. We present and prove very important generalized results with the help of Fenchel–Legendre transform, submultiplicative functions. We prove the (γ,a)-nabla conformable Hölder’s and Jensen’s inequality on time scales. We prove several inequalities due to Hardy–Hilbert inequalities on time scales. Furthermore, we introduce the continuous inequalities and discrete inequalities as special case.


2021 ◽  
Vol 5 (4) ◽  
pp. 207
Author(s):  
Muhammad Bilal ◽  
Khuram Ali Khan ◽  
Hijaz Ahmad ◽  
Ammara Nosheen ◽  
Khalid Mahmood Awan ◽  
...  

In this paper, Jensen’s inequality and Fubini’s Theorem are extended for the function of several variables via diamond integrals of time scale calculus. These extensions are used to generalize Hardy-type inequalities with general kernels via diamond integrals for the function of several variables. Some Hardy Hilbert and Polya Knop type inequalities are also discussed as special cases. Classical and new inequalities are deduced from the main results using special kernels and particular time scales.


Statistics ◽  
2021 ◽  
pp. 1-15
Author(s):  
Sang Kyu Lee ◽  
Jae Ho Chang ◽  
Hyoung-Moon Kim

2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Xuexiao You ◽  
Muhammad Adil Khan ◽  
Hamid Reza Moradi

Jensen’s and its related inequalities have attracted the attention of several mathematicians due to the fact that Jensen’s inequality has numerous applications in almost all disciplines of mathematics and in other fields of science. In this article, we propose new bounds for the difference of two sides of Jensen’s inequality in terms of power means. An example has been presented for the importance and support of the main results. Related results have been given in quantum calculus. As consequences, improvements of quantum integral version of Hermite-Hadamard inequality have been derived. The obtained inequalities have been applied for some well-known inequalities such as Hermite-Hadamrd, Hölder, and power mean inequalities. Finally, some applications are given in information theory. The tools performed for obtaining the main results may be applied to obtain more results for other inequalities.


Fractals ◽  
2021 ◽  
pp. 2240008
Author(s):  
SAAD IHSAN BUTT ◽  
SABA YOUSAF ◽  
HIJAZ AHMAD ◽  
TAHER A. NOFAL

The most notable inequality pertaining convex functions is Jensen’s inequality which has tremendous applications in several fields. Mercer introduced an important variant of Jensen’s inequality called as Jensen–Mercer’s inequality. Fractal sets are useful tools for describing the accuracy of inequalities in convex functions. The purpose of this paper is to establish a generalized Jensen–Mercer inequality for a generalized convex function on a real linear fractal set [Formula: see text] ([Formula: see text]. Further, we also demonstrate some generalized Jensen–Mercer-type inequalities by employing local fractional calculus. Lastly, some applications related to Jensen–Mercer inequality and [Formula: see text]-type special means are given. The present approach is efficient, reliable, and may motivate further research in this area.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yongping Deng ◽  
Hidayat Ullah ◽  
Muhammad Adil Khan ◽  
Sajid Iqbal ◽  
Shanhe Wu

In this study, we present some new refinements of the Jensen inequality with the help of majorization results. We use the concept of convexity along with the theory of majorization and obtain refinements of the Jensen inequality. Moreover, as consequences of the refined Jensen inequality, we derive some bounds for power means and quasiarithmetic means. Furthermore, as applications of the refined Jensen inequality, we give some bounds for divergences, Shannon entropy, and various distances associated with probability distributions.


Sign in / Sign up

Export Citation Format

Share Document