scholarly journals High Frequency Resonance Damping Method for Voltage Source Converter Based on Voltage Feedforward Control

Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1591
Author(s):  
Bo Pang ◽  
Feng Li ◽  
Hui Dai ◽  
Heng Nian

High frequency resonance (HFR) is a subsistent problem which affects the operation of the voltage source converter (VSC) connected to the parallel compensated grid. The appearance of HFR introduces a significant high frequency component in the grid voltage, thereby the operation of VSC system will be seriously affected. For enhancing the operation capability of VSC system, an HFR damping method based on the voltage feedforward control is proposed in this paper, which can reshape the VSC system impedance effectively in a wideband range. Besides, different with the existing HFR damping methods, the proposed method introduces a correction factor instead of the series virtual impedance with fixed value, so that the effect of impedance reshaping is irrelevant to the parameters of controlled object. In addition, this paper analyzes the fundamental control performance of VSC system after equipping the proposed method, for verifying that the proposed method will not worsen the fundamental control. Experimental results are given to validate the effectiveness of the proposed damping method.

2013 ◽  
Vol 791-793 ◽  
pp. 841-844
Author(s):  
Jing Zhong Xiang ◽  
Hui Zhu ◽  
Meng Jin Gao ◽  
Fang Jian Chen ◽  
Xian Jiang Shi ◽  
...  

ntrinsic mode function component (IMF) has been effectively decomposed by using empirical mode (EMD) decomposition method, and the high-frequency resonance frequency band the rolling bearing components is extracted. Then the high frequency component of the IMF is shifted to the lower frequency by using real frequency modulation principle, and a new envelope refining spectrum is obtained through the Hilbert transform after low frequency sampling. The method not only simplifies the design of band-pass filtering process but improves refinement computational efficiency of the envelope spectrum. The method verifies the correctness of the theory and practical method through the analysis of the fault diagnosis of rolling bearing inner ring experiment.


2006 ◽  
Vol 321-323 ◽  
pp. 968-971
Author(s):  
Won Su Park ◽  
Sang Woo Choi ◽  
Joon Hyun Lee ◽  
Kyeong Cheol Seo ◽  
Joon Hyung Byun

For improving quality of a carbon fiber reinforced composite material (CFRP) by preventing defects such as delamination and void, it should be inspected in fabrication process. Novel non-contacting evaluation technique is required because the transducer should be contacted on the CFRP in conventional ultrasonic technique during the non-destructive evaluation and these conventional contact techniques can not be applied in a novel fiber placement system. For the non-destructive evaluation of delamination in CFRP, various methods for the generation and reception of laser-generated ultrasound are applied using piezoelectric transducer, air-coupled transducer, wavelet transform technique etc. The high frequency component of laser-generated guided wave received with piezoelectric sensor disappeared after propagating through delamination region. Air-coupled transducer was tried to be adopted in reception of laser-generated guided wave generated by using linear slit array in order to generate high frequency guided wave with a frequency of 1.1 MHz. Nevertheless, it was failed to receive high frequency guided wave in using air-coupled transducer and linear slit array. Transmitted laser-generated ultrasonic wave was received on back-wall and its frequency was analyzed to establish inspecting technique to detect delamination by non-contact ultrasonic method. In a frequency spectrum analysis, intensity ratio of low frequency and center frequency was approvable parameter to detect delamination.


Author(s):  
Hakaru Tamukoh ◽  
Hideaki Kawano ◽  
Noriaki Suetake ◽  
Masatoshi Sekine ◽  
Byungki Cha ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document