scholarly journals Using the Analysis of the Gases Dissolved in Oil in Diagnosis of Transformer Bushings with Paper-Oil Insulation—A Case Study

Energies ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 6713
Author(s):  
Tomasz Piotrowski ◽  
Pawel Rozga ◽  
Ryszard Kozak ◽  
Zbigniew Szymanski

The article describes a case study when the voltage collapse during lightning impulse tests of new power transformers was noticed and when the repeated tests finished with a positive result. The step-by-step process of reaching the conclusion on the basis of dissolved gas analysis (DGA) as a key method of the investigations was presented. The considerations on the possible source of the analysis showed that the Duval triangle method, used in the analysis of the concentration of gases dissolved in oil samples taken from bushings, more reliably and unambiguously than the ratio method recommended in the IEC 60599 Standard, indicated a phenomenon which was identified in the insulation structure of bushings analyzed. Additionally, the results from DGA were found to be consistent with an internal inspection of bushings, which showed a visible trace of discharge on the inside part of the epoxy housing, as a result of the lightning induced breakdown.

2021 ◽  
Vol 2052 (1) ◽  
pp. 012033
Author(s):  
S Yu Petrova

Abstract Dissolved Gas Analysis (DGA) for oil samples has been the most widely used diagnosis tool for transformer condition assessment for many years. However, DGA use to oil-filled transformers with a voltage class up to 100 kV. The aim of this paper is to address the issue of DGA interpretation to oil-filled transformers with a voltage class of 10 kV. This paper will present DGA tests results from 57 power transformers and will propose a maintenance decision making procedure using the IEC 60599-2015 Ratio Method, IEEE Std C57.104-2008 include Dornenberg Ratio Method and Rogers Ratio Method, and Russian Std CTO 56947007-29.180.010.094-2011 and Russian Std RD 153-34.0-46.302-00.


Energies ◽  
2019 ◽  
Vol 12 (20) ◽  
pp. 4017 ◽  
Author(s):  
Haikun Shang ◽  
Junyan Xu ◽  
Zitao Zheng ◽  
Bing Qi ◽  
Liwei Zhang

Power transformers are important equipment in power systems and their reliability directly concerns the safety of power networks. Dissolved gas analysis (DGA) has shown great potential for detecting the incipient fault of oil-filled power transformers. In order to solve the misdiagnosis problems of traditional fault diagnosis approaches, a novel fault diagnosis method based on hypersphere multiclass support vector machine (HMSVM) and Dempster–Shafer (D–S) Evidence Theory (DET) is proposed. Firstly, proper gas dissolved in oil is selected as the fault characteristic of power transformers. Secondly, HMSVM is employed to diagnose transformer fault with selected characteristics. Then, particle swarm optimization (PSO) is utilized for parameter optimization. Finally, DET is introduced to fuse three different fault diagnosis methods together, including HMSVM, hybrid immune algorithm (HIA), and kernel extreme learning machine (KELM). To avoid the high conflict between different evidences, in this paper, a weight coefficient is introduced for the correction of fusion results. Results indicate that the fault diagnosis based on HMSVM has the highest probability to identify transformer faults among three artificial intelligent approaches. In addition, the improved D–S evidence theory (IDET) combines the advantages of each diagnosis method and promotes fault diagnosis accuracy.


Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1009 ◽  
Author(s):  
Rahman Azis Prasojo ◽  
Harry Gumilang ◽  
Suwarno ◽  
Nur Ulfa Maulidevi ◽  
Bambang Anggoro Soedjarno

In determining the severity of power transformer faults, several approaches have been previously proposed; however, most published studies do not accommodate gas level, gas rate, and Dissolved Gas Analysis (DGA) interpretation in a single approach. To increase the reliability of the faults’ severity assessment of power transformers, a novel approach in the form of fuzzy logic has been proposed as a new solution to determine faults’ severity using the combination of gas level, gas rate, and DGA interpretation from the Duval Pentagon Method (DPM). A four-level typical concentration and rate were established based on the local population. To simplify the assessment of hundreds of power transformer data, a Support Vector Machine (SVM)-based DPM with high agreements to the graphical DPM has been developed. The proposed approach has been implemented to 448 power transformers and further implementation was done to evaluate faults’ severity of power transformers from historical DGA data. This new approach yields in high agreement with the previous methods, but with better sensitivity due to the incorporation of gas level, gas rate, and DGA interpretation results in one approach.


2014 ◽  
Vol 535 ◽  
pp. 157-161
Author(s):  
Jeeng Min Ling ◽  
Ming Jong Lin ◽  
Chao Tang Yu

Dissolved gas analysis (DGA) is an effective tool for detecting incipient faults in power transformers. The ANSI/IEEE C57.104 standards, the most popular guides for the interpretation of gases generated in oil-immersed transformers, and the IEC-Duval triangle method are integrated to develop the proposed power transformer fault diagnosis method. The key dissolved gases, including H2, CH4, C2H2, C2H4, C2H6, and total combustible gases (TCG), suggested by ASTM D3612s instruction for DGA is investigated. The tested data of the transformer oil were taken from the substations of Taiwan Power Company. Diagnosis results with the text form called IEC-Duval triangle method show the validation and accuracy to detect the incipient fault in the power transformer.


Sign in / Sign up

Export Citation Format

Share Document