scholarly journals Nonlinear Steady-State Optimization of Large-Scale Gas Transmission Networks

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2832
Author(s):  
Andrzej J. Osiadacz ◽  
Małgorzata Kwestarz

The major optimization problem of the gas transmission system is to determine how to operate the compressors in a network to deliver a given flow within the pressure bounds while using minimum compressor power (minimum fuel consumption or maximum network efficiency). Minimization of fuel usage is a major objective to control gas transmission costs. This is one of the problems that has received most of the attention from both practitioners and researchers because of its economic impact. The article describes the algorithm of steady-state optimization of a high-pressure gas network of any structure that minimizes the operating cost of compressors. The developed algorithm uses the “sequential quadratic programming (SQP)” method. The tests carried out on the real network segment confirmed the correctness of the developed algorithm and, at the same time, proved its computational efficiency. Computational results obtained with the SQP method demonstrate the viability of this approach.

Author(s):  
M. M. H. Elroby ◽  
S. F. Mekhamer ◽  
H. E. A. Talaat ◽  
M. A. Moustafa Hassan

This study proposes an algorithm to allocate different types of flexible AC transmission system (FACTS) in power systems. The main objective of this study is to maximize profit by minimizing the system’s operating cost including FACTS devices (FDs) installation cost. Dynamic and steady state operating restrictions with loads uncertainty are included in the problem formulation. The overall problem is solved using both teaching learning based optimization (TLBO) technique for attaining the optimal allocation of the FDs as main-optimization problem and matpower interior point solver (MIPS) for optimal power flow (OPF) as the sub-optimization problem. The validation of the proposed approach is verified by applying it to test system of 59-bus; Simplified 14-Generator model of the South East Australian power system.


2021 ◽  
Vol 26 (2) ◽  
pp. 36
Author(s):  
Alejandro Estrada-Padilla ◽  
Daniela Lopez-Garcia ◽  
Claudia Gómez-Santillán ◽  
Héctor Joaquín Fraire-Huacuja ◽  
Laura Cruz-Reyes ◽  
...  

A common issue in the Multi-Objective Portfolio Optimization Problem (MOPOP) is the presence of uncertainty that affects individual decisions, e.g., variations on resources or benefits of projects. Fuzzy numbers are successful in dealing with imprecise numerical quantities, and they found numerous applications in optimization. However, so far, they have not been used to tackle uncertainty in MOPOP. Hence, this work proposes to tackle MOPOP’s uncertainty with a new optimization model based on fuzzy trapezoidal parameters. Additionally, it proposes three novel steady-state algorithms as the model’s solution process. One approach integrates the Fuzzy Adaptive Multi-objective Evolutionary (FAME) methodology; the other two apply the Non-Dominated Genetic Algorithm (NSGA-II) methodology. One steady-state algorithm uses the Spatial Spread Deviation as a density estimator to improve the Pareto fronts’ distribution. This research work’s final contribution is developing a new defuzzification mapping that allows measuring algorithms’ performance using widely known metrics. The results show a significant difference in performance favoring the proposed steady-state algorithm based on the FAME methodology.


Author(s):  
D. Keith Walters ◽  
Greg W. Burgreen ◽  
Robert L. Hester ◽  
David S. Thompson ◽  
David M. Lavallee ◽  
...  

Computational fluid dynamics (CFD) simulations were performed for unsteady periodic breathing conditions, using large-scale models of the human lung airway. The computational domain included fully coupled representations of the orotracheal region and large conducting zone up to generation four (G4) obtained from patient-specific CT data, and the small conducting zone (to G16) obtained from a stochastically generated airway tree with statistically realistic geometrical characteristics. A reduced-order geometry was used, in which several airway branches in each generation were truncated, and only select flow paths were retained to G16. The inlet and outlet flow boundaries corresponded to the oronasal opening (superior), the inlet/outlet planes in terminal bronchioles (distal), and the unresolved airway boundaries arising from the truncation procedure (intermediate). The cyclic flow was specified according to the predicted ventilation patterns for a healthy adult male at three different activity levels, supplied by the whole-body modeling software HumMod. The CFD simulations were performed using Ansys FLUENT. The mass flow distribution at the distal boundaries was prescribed using a previously documented methodology, in which the percentage of the total flow for each boundary was first determined from a steady-state simulation with an applied flow rate equal to the average during the inhalation phase of the breathing cycle. The distal pressure boundary conditions for the steady-state simulation were set using a stochastic coupling procedure to ensure physiologically realistic flow conditions. The results show that: 1) physiologically realistic flow is obtained in the model, in terms of cyclic mass conservation and approximately uniform pressure distribution in the distal airways; 2) the predicted alveolar pressure is in good agreement with previously documented values; and 3) the use of reduced-order geometry modeling allows accurate and efficient simulation of large-scale breathing lung flow, provided care is taken to use a physiologically realistic geometry and to properly address the unsteady boundary conditions.


Author(s):  
Ezzeddine Touti ◽  
Ali Sghaier Tlili ◽  
Muhannad Almutiry

Purpose This paper aims to focus on the design of a decentralized observation and control method for a class of large-scale systems characterized by nonlinear interconnected functions that are assumed to be uncertain but quadratically bounded. Design/methodology/approach Sufficient conditions, under which the designed control scheme can achieve the asymptotic stabilization of the augmented system, are developed within the Lyapunov theory in the framework of linear matrix inequalities (LMIs). Findings The derived LMIs are formulated under the form of an optimization problem whose resolution allows the concurrent computation of the decentralized control and observation gains and the maximization of the nonlinearity coverage tolerated by the system without becoming unstable. The reliable performances of the designed control scheme, compared to a distinguished decentralized guaranteed cost control strategy issued from the literature, are demonstrated by numerical simulations on an extensive application of a three-generator infinite bus power system. Originality/value The developed optimization problem subject to LMI constraints is efficiently solved by a one-step procedure to analyze the asymptotic stability and to synthesize all the control and observation parameters. Therefore, such a procedure enables to cope with the conservatism and suboptimal solutions procreated by optimization problems based on iterative algorithms with multi-step procedures usually used in the problem of dynamic output feedback decentralized control of nonlinear interconnected systems.


Author(s):  
Brian Bush ◽  
Laura Vimmerstedt ◽  
Jeff Gonder

Connected and automated vehicle (CAV) technologies could transform the transportation system over the coming decades, but face vehicle and systems engineering challenges, as well as technological, economic, demographic, and regulatory issues. The authors have developed a system dynamics model for generating, analyzing, and screening self-consistent CAV adoption scenarios. Results can support selection of scenarios for subsequent computationally intensive study using higher-resolution models. The potential for and barriers to large-scale adoption of CAVs have been analyzed using preliminary quantitative data and qualitative understandings of system relationships among stakeholders across the breadth of these issues. Although they are based on preliminary data, the results map possibilities for achieving different levels of CAV adoption and system-wide fuel use and demonstrate the interplay of behavioral parameters such as how consumers value their time versus financial parameters such as operating cost. By identifying the range of possibilities, estimating the associated energy and transportation service outcomes, and facilitating screening of scenarios for more detailed analysis, this work could inform transportation planners, researchers, and regulators.


2011 ◽  
Vol 314-316 ◽  
pp. 2433-2438
Author(s):  
Wei Zhi Wang

By only applying a after the event exam in the quality control of the batch production is not enough to meet the needs of modern large-scale production. To a certain extent, modern quality control is a dynamic process of the steady-state judge and adjustment. A simple and reliable steady-state judge rule and method is the premise to guarantee the normal operation. This paper provides a quantitative method to evaluate production process steady-state by analyzing influence factors based on mathematical statistics. The method is both suitable for simple production process and complex production process with sub-processes.


2021 ◽  
Author(s):  
Peter Rutkevich ◽  
Georgy Golitsyn ◽  
Anatoly Tur

<p>Large-scale instability in incompressible fluid driven by the so called Anisotropic Kinetic Alpha (AKA) effect satisfying the incompressible Navier-Stokes equation with Coriolis force is considered. The external force is periodic; this allows applying an unusual for turbulence calculations mathematical method developed by Frisch et al [1]. The method provides the orders for nonlinear equations and obtaining large scale equations from the corresponding secular relations that appear at different orders of expansions. This method allows obtaining not only corrections to the basic solutions of the linear problem but also provides the large-scale solution of the nonlinear equations with the amplitude exceeding that of the basic solution. The fluid velocity is obtained by numerical integration of the large-scale equations. The solution without the Coriolis force leads to constant velocities at the steady-state, which agrees with the full solution of the Navier-Stokes equation reported previously. The time-invariant solution contains three families of solutions, however, only one of these families contains stable solutions. The final values of the steady-state fluid velocity are determined by the initial conditions. After account of the Coriolis force the solutions become periodic in time and the family of solutions collapses to a unique solution. On the other hand, even with the Coriolis force the fluid motion remains two-dimensional in space and depends on a single spatial variable. The latter fact limits the scope of the AKA method to applications with pronounced 2D nature. In application to 3D models the method must be used with caution.</p><p>[1] U. Frisch, Z.S. She and P. L. Sulem, “Large-Scale Flow Driven by the Anisotropic Kinetic Alpha Effect,” Physica D, Vol. 28, No. 3, 1987, pp. 382-392.</p>


2021 ◽  
Author(s):  
Hamed Khorasani ◽  
Zhenduo Zhu

<p>Phosphorus (P) is the key and limiting nutrient in the eutrophication of freshwater resources. Modeling P retention in lakes using steady-state mass balance models (i.e. Vollenweider-type models) provides insights into the lake P management and a simple method for large-scale assessments of P in lakes. One of the basic problems in the mass balance modeling of P in lakes is the removal of P from the lake water column by settling. A fraction of the incoming P into the lake from the watershed is associated with fast-settling particles (e.g. sediment particles) that result in the removal of that fraction of P quickly at the lake entrance. However, existing models considering a constant fraction of fast-settling TP for all lakes are shown to result in overestimation of the retention of P in lakes with short hydraulic residence time. In this study, we combine a hypothesis of the fast- and slow-settling P fractions into the steady-state mass balance models of P retention in lakes. We use a large database of lakes to calibrate the model and evaluate the hypothesis. The results of this work can be used for the improvement of the prediction power of P retention models in lakes and help to better understand the processes of P cycling in lakes.</p>


Author(s):  
Ziyi Ma ◽  
Joseph Y. J. Chow

We propose a bilevel transit network frequency setting problem in which the upper level consists of analytical route cost functions and the lower level is an activity-based market equilibrium derived using MATSim-NYC. The use of MATSim in the lower-level problem incorporates sensitivity of the design process to competition from other modes, including ride-hail, and can support large-scale optimization. The proposed method is applied to the existing Brooklyn bus network, which includes 78 bus routes, 650,000 passengers per day, 550 route-km, and 4,696 bus stops. MATSim-NYC modeling of the existing bus network has a ridership-weighted average error per route of 21%. The proposed algorithm is applied to a benchmark network and confirms their predicted 20% growth in ridership using their benchmark design. Applying our proposed algorithm to their network with 78 routes and 24 periods, we have a problem with 3,744 decision variables. The algorithm converged within 10 iterations to a delta of 0.064%. Compared with the existing scenario, we increased ridership by 20% and reduced operating cost by 25%. We improved the farebox recovery ratio from the existing 0.22 to 0.35, 0.06 more than the benchmark design. Analysis of mode substitution effects suggest that 2.5% of trips would be drawn from ride-hail while 74% would come from driving.


Sign in / Sign up

Export Citation Format

Share Document