coriolis force
Recently Published Documents


TOTAL DOCUMENTS

602
(FIVE YEARS 101)

H-INDEX

31
(FIVE YEARS 3)

2022 ◽  
pp. 1-24
Author(s):  
Jordi Ventosa-Molina ◽  
Björn Koppe ◽  
Martin Lange ◽  
Ronald Mailach ◽  
Jochen Fröhlich

Abstract In turbomachines, rotors and stators differ by the rotation of the former. Hence, half of each stage is directly influenced by rotation effects. The influence of rotation on the flow structure and its impact on the performance is studied through Wall-Resolving Large Eddy Simulations of a rotor with large relative tip gap size. The simulations are performed in a rotating frame with rotation accounted for through a Coriolis force term. In a first step experimental results are used to provide validation. The main part of the study is the comparison of the results from two simulations, one representing the rotating configuration, one with the Coriolis force removed, without any other change. This setup allows very clean assessment of the influence of rotation. The turbulence-resolving approach ensures that the turbulent flow features are well represented. The results show a significant impact of rotation on the secondary flow. In the tip region the Tip Leakage Vortex is enlarged and destabilised. Inside the tip gap the flow is altered as well, with uniformization in the rotating case. At the blade midspan, no significant effects are observed on the suction side, while an earlier transition to turbulence is found on the pressure side. Near the hub, rotation effects are shown to reduce the corner separation significantly.


2022 ◽  
Author(s):  
R. Ivanov

Abstract. A derivation of the Ostrovsky equation for internal waves with methods of the Hamiltonian water wave dynamics is presented. The internal wave formed at a pycnocline or thermocline in the ocean is influenced by the Coriolis force of the Earth's rotation. The Ostrovsky equation arises in the long waves and small amplitude approximation and for certain geophysical scales of the physical variables.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Chuanlu Zhou ◽  
Long Qin ◽  
Ming Chen ◽  
Jingxiang Zhang

Beam slab structure is often encountered in a complex tunnel boring machine. Beam slab structure is subject to dynamic load, which is easy to cause fatigue damage and affect its service life. Therefore, it is necessary to control the vibration of this kind of beam slab structure. In this study, the central rigid body-flexible beam model is established for the rotating beam and plate rotating around the y-axis. Based on the Hamilton variational principle, the dynamic equation of the central rigid body-flexible beam system is established, and the dynamic model of the central rigid body-flexible beam system considering the influence of Coriolis force and centrifugal force is given. The vibration control of the central rigid body-flexible beam system is studied. The vibration mode of the rotating Euler Bernoulli beam is determined by using the elastic wave and vibration mode theory. The influence of the rotating motion on the beam vibration is analyzed, and the variable structure control law is designed to suppress the beam vibration. Numerical simulation results show that the control method can effectively suppress the first-order and second-order vibration of the beam and verify the effectiveness of the control strategy.


2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Ikram Ullah ◽  
Tasawar Hayat ◽  
Arsalan Aziz ◽  
Ahmed Alsaedi

Abstract Nanofluids based on CNTs/ethylene glycol have a potential role in contributing to industrial applications like heat exchangers, domestic refrigerator, electronics cooling, etc. The aim and novelty of the present research is to communicate the significance of the Coriolis force and Darcy-Forchheimer stretched flow of ethylene glycol (EG) conveying carbon nanotubes (CNTs) in a rotating frame. Furthermore, entropy analysis is the main focus in this study. Two types of CNTs known as multiwalled (MWCNT) and single-walled (SWCNT) carbon nanotubes are considered. Ethylene glycol (EG) is treated as the base liquid. Xue’s model is utilized for the physical aspects of specific heat, density and thermal conductivity. The heat transfer mechanism is modeled through nonlinear thermal radiation, viscous dissipation and convective condition. The governing flow problems have been computed numerically via the NDSolve method. Outcomes for single-walled and multi-walled CNTs are arranged and compared. Our findings reveal that entropy generation is accompanied by an increasing trend in the Brinkman number and temperature ratio parameter. Temperature increases with the intensification of radiative and convective variables. Moreover, the temperature gradient has marginally larger values in the case of SWCNT, when compared with MWCNT.


MAUSAM ◽  
2021 ◽  
Vol 48 (3) ◽  
pp. 385-396
Author(s):  
D.R. CHAKRABORTY ◽  
N. K. AGARW AL

ABSTRACT. Kinetic energy (KE) of the rotational and divergent flows and the nonlinear energy conversion between them due to the action of Coriolis force, divergence and vorticity, partition) further into stationary and transient motions are computed in the Fourier spectral domain during different phases of July 1979 monsoon over the latitudinal belt 10° S - 30° at 850 and 200 hPa and studied. It is found that nonlinear divergent to rotational KE exchange due to the action of Coriolis force is the primary contributor for all categories of stationary and transient waves at both the levels over tropics. Our results indicate that in the transient scale dynamics the wave-wave interaction plays a dominant role at 850 hPa. Divergent to rotational KE conversion by zonal-wave interaction due to divergence and wave-wave interaction due to Coriolis force are identified as important mechanisms for maintenance of rotational stationary planetary and transient synoptic scale waves respectively at 200 hPa. It is inferred that nonlinear energy conversions due to Coriolis force and vorticity oppose each other at 200 hPa. The results support that the energy conversion phenomenon may not be entirely barotropic. The importance of ageostrophic effect at different stages of monsoon activities is also shown.    


Sign in / Sign up

Export Citation Format

Share Document