scholarly journals Catalytic Hydrogenation of CO2 to Methanol over Cu/MgO Catalysts in a Semi-Continuous Reactor

Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4319
Author(s):  
Sascha Kleiber ◽  
Moritz Pallua ◽  
Matthäus Siebenhofer ◽  
Susanne Lux

Methanol synthesis from carbon dioxide (CO2) may contribute to carbon capture and utilization, energy fluctuation control and the availability of CO2-neutral fuels. However, methanol synthesis is challenging due to the stringent thermodynamics. Several catalysts mainly based on the carrier material Al2O3 have been investigated. Few results on MgO as carrier material have been published. The focus of this study is the carrier material MgO. The caustic properties of MgO depend on the caustification/sintering temperature. This paper presents the first results of the activity of a Cu/MgO catalyst for the low calcining temperature of 823 K. For the chosen calcining conditions, MgO is highly active with respect to its CO2 adsorption capacity. The Cu/MgO catalyst showed good catalytic activity in CO2 hydrogenation with a high selectivity for methanol. In repeated cycles of reactant consumption and product condensation followed by reactant re-dosing, an overall relative conversion of CO2 of 76% and an overall selectivity for methanol of 59% was obtained. The maximum selectivity for methanol in a single cycle was 88%.

SPE Journal ◽  
2021 ◽  
pp. 1-17
Author(s):  
Saira ◽  
Emmanuel Ajoma ◽  
Furqan Le-Hussain

Summary Carbon dioxide (CO2) enhanced oil recovery is the most economical technique for carbon capture, usage, and storage. In depleted reservoirs, full or near-miscibility of injected CO2 with oil is difficult to achieve, and immiscible CO2 injection leaves a large volume of oil behind and limits available pore volume (PV) for storing CO2. In this paper, we present an experimental study to delineate the effect of ethanol-treated CO2 injection on oil recovery, net CO2 stored, and amount of ethanol left in the reservoir. We inject CO2 and ethanol-treated CO2 into Bentheimer Sandstone cores representing reservoirs. The oil phase consists of a mixture of 0.65 hexane and 0.35 decane (C6-C10 mixture) by molar fraction in one set of experimental runs, and pure decane (C10) in the other set of experimental runs. All experimental runs are conducted at constant temperature 70°C and various pressures to exhibit immiscibility (9.0 MPa for the C6-C10 mixture and 9.6 MPa for pure C10) or near-miscibility (11.7 MPa for the C6-C10 mixture and 12.1 MPa for pure C10). Pressure differences across the core, oil recovery, and compositions and rates of the produced fluids are recorded during the experimental runs. Ultimate oil recovery under immiscibility is found to be 9 to 15% greater using ethanol-treated CO2 injection than that using pure CO2 injection. Net CO2 stored for pure C10 under immiscibility is found to be 0.134 PV greater during ethanol-treated CO2 injection than during pure CO2 injection. For the C6-C10 mixture under immiscibility, both ethanol-treated CO2 injection and CO2 injection yield the same net CO2 stored. However, for the C6-C10 mixture under near-miscibility,ethanol-treated CO2 injection is found to yield 0.161 PV less net CO2 stored than does pure CO2 injection. These results suggest potential improvement in oil recovery and net CO2 stored using ethanol-treated CO2 injection instead of pure CO2 injection. If economically viable, ethanol-treated CO2 injection could be used as a carbon capture, usage, and storage method in low-pressure reservoirs, for which pure CO2 injection would be infeasible.


2021 ◽  
Author(s):  
Florence Letitia Bebb ◽  
Kate Clare Serena Evans ◽  
Jagannath Mukherjee ◽  
Bilal Saeed ◽  
Geovani Christopher

Abstract There are several significant differences between the behavior of injected CO2 and reservoired hydrocarbons in the subsurface. These fundamental differences greatly influence the modeling of CO2 plumes. Carbon capture, utilization, and storage (CCUS) is growing in importance in the exploration and production (E&P) regulatory environment with the Oil and Gas Climate Initiative (OGCI) making CCUS a priority. Companies need to prospect for storage sites and evaluate both the short-term risks and long-term fate of stored carbon dioxide (CO2). Understanding the physics governing fluid flow is important to both CO2 storage and hydrocarbon exploration and production. In the last decade, there has been much research into the movement and migration of CO2 in the subsurface. A better understanding of the flow dynamics of CO2 plumes in the subsurface has highlighted a number of significant differences in modeling CO2 storage sites compared with hydrocarbon reservoir simulations. These differences can greatly influence reliability when modeling CO2 storage sites.


Energies ◽  
2019 ◽  
Vol 12 (10) ◽  
pp. 1945 ◽  
Author(s):  
Lars Ingolf Eide ◽  
Melissa Batum ◽  
Tim Dixon ◽  
Zabia Elamin ◽  
Arne Graue ◽  
...  

Presently, the only offshore project for enhanced oil recovery using carbon dioxide, known as CO2-EOR, is in Brazil. Several desk studies have been undertaken, without any projects being implemented. The objective of this review is to investigate barriers to the implementation of large-scale offshore CO2-EOR projects, to identify recent technology developments, and to suggest non-technological incentives that may enable implementation. We examine differences between onshore and offshore CO2-EOR, emerging technologies that could enable projects, as well as approaches and regulatory requirements that may help overcome barriers. Our review shows that there are few, if any, technical barriers to offshore CO2-EOR. However, there are many other barriers to the implementation of offshore CO2-EOR, including: High investment and operation costs, uncertainties about reservoir performance, limited access of CO2 supply, lack of business models, and uncertainties about regulations. This review describes recent technology developments that may remove such barriers and concludes with recommendations for overcoming non-technical barriers. The review is based on a report by the Carbon Sequestration Leadership Forum (CSLF).


2018 ◽  
Vol 10 (12) ◽  
pp. 4400 ◽  
Author(s):  
Kyriaki Kelektsoglou

As the demand for the reduction of global emissions of carbon dioxide (CO2) increases, the need for anthropogenic CO2 emission reductions becomes urgent. One promising technology to this end, is carbon capture and storage (CCS). This paper aims to provide the current state-of-the-art of CO2 capure, transport, and storage and focuses on mineral carbonation, a novel method for safe and permanent CO2 sequestration which is based on the reaction of CO2 with calcium or magnesium oxides or hydroxides to form stable carbonate materials. Current commercial scale projects of CCS around Europe are outlined, demonstrating that only three of them are in operation, and twenty-one of them are in pilot phase, including the only one case of mineral carbonation in Europe the case of CarbFix in Iceland. This paper considers the necessity of CO2 sequestration in Greece as emissions of about 64.6 million tons of CO2 annually, originate from the lignite fired power plants. A real case study concerning the mineral storage of CO2 in Greece has been conducted, demonstrating the applicability of several geological forms around Greece for mineral carbonation. The study indicates that Mount Pindos ophiolite and Vourinos ophiolite complex could be a promising means of CO2 sequestration with mineral carbonation. Further studies are needed in order to confirm this aspect.


Processes ◽  
2020 ◽  
Vol 8 (8) ◽  
pp. 941
Author(s):  
Jun Liu ◽  
Qiang Chen ◽  
Peng Qi

Upgrading raw biogas to methane (CH4) is a vital prerequisite for the utilization of biogas as a vehicle fuel or the similar field as well. In this work, biogas yield from the anaerobic fermentation of food waste containing methane (CH4, 60.4%), carbon dioxide (CO2, 29.1%), hydrogen sulfide (H2S, 1.5%), nitrogen (N2, 7.35%) and oxygen (O2, 1.6%) was upgraded by dynamic adsorption. The hydrogen sulfide was removed from the biogas in advance by iron oxide (Fe2O3) because of its corrosion of the equipment. Commercial 13X zeolite and carbon molecular sieve (CMS) were used to remove the other impurity gases from wet or dry biogas. It was found that neither 13X zeolite nor CMS could effectively remove each of the impurities in the wet biogas for the effect of water vapor. However, 13X zeolite could effectively remove CO2 after the biogas was dried with silica and showed a CO2 adsorption capacity of 78 mg/g at the condition of 0.2 MPa and 25 °C. Additionally, 13X zeolite almost did not adsorb nitrogen (N2), so the CH4 was merely boosted to ac. 91% after the desulfurated dry biogas passed through 13X zeolite, nitrogen remaining in the biogas. CMS would exhibit superior N2 adsorption capacity and low CO2 adsorption capacity if some N2 was present in biogas, so CMS was able to remove all the nitrogen and fractional carbon dioxide from the desulfurated dry biogas in a period of time. Finally, when the desulfurated dry biogas passed through CMS and 13X zeolite in turn, the N2 and CO2 were sequentially removed, and then followed the high purity CH4 (≥96%).


Materials ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 990
Author(s):  
Mingxing Bai ◽  
Lu Liu ◽  
Chengli Li ◽  
Kaoping Song

The injection of carbon dioxide (CO2) in low-permeable reservoirs can not only mitigate the greenhouse effect on the environment, but also enhance oil and gas recovery (EOR). For numerical simulation work of this process, relative permeability can help predict the capacity for the flow of CO2 throughout the life of the reservoir, and reflect the changes induced by the injected CO2. In this paper, the experimental methods and empirical correlations to determine relative permeability are reviewed and discussed. Specifically, for a low-permeable reservoir in China, a core displacement experiment is performed for both natural and artificial low-permeable cores to study the relative permeability characteristics. The results show that for immiscible CO2 flooding, when considering the threshold pressure and gas slippage, the relative permeability decreases to some extent, and the relative permeability of oil/water does not reduce as much as that of CO2. In miscible flooding, the curves have different shapes for cores with a different permeability. By comparing the relative permeability curves under immiscible and miscible CO2 flooding, it is found that the two-phase span of miscible flooding is wider, and the relative permeability at the gas endpoint becomes larger.


Sign in / Sign up

Export Citation Format

Share Document