scholarly journals Assessment of Ground Regeneration around Borehole Heat Exchangers between Heating Seasons in Cold Climates: A Case Study in Bialystok (NE, Poland)

Energies ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4793
Author(s):  
Joanna Piotrowska-Woroniak

Based on the experimental studies, the process of ground regeneration around the borehole loaded with brine-water heat pumps working exclusively for heating purposes in the period of four consecutive heating seasons in a cold climate was presented. The research was conducted in north-eastern Poland. The aim of the work is to verify the phenomenon of thermal ground regeneration in the period between heating seasons on the basis of the recorded data and to check whether the ground is able to regenerate itself and at what rate. It was noticed that the ground does not fully regenerate, especially during heating seasons with lower temperatures. In the analyzed period, from 22 September 2016 to 12 October 2020, the ground probably cooled irreversibly by 1.5 °C. In order to illustrate and evaluate the speed of changes in the ground, the one’s profile with an undisturbed temperature field was presented for each month of the year. The presented results can be a very important source of information for the analysis of geothermal conditions occurring in the ground. They can be used to verify mathematical models and conduct long-term simulations that allow us to see the complexity of the processes taking place in the ground.

Author(s):  
John R. Droter, DDS

The T-Scan is an effective patient education tool for illustrating existing occlusal pathology. It presents complex occlusal information in a visual format that is easily understood. The T-Scan applies to all stages of the teaching/learning process because its recorded data forms the framework upon which a doctor/patient discussion can begin regarding the patient's occlusal disease manifestations, the potential benefit of treatments, and the risks of not undergoing corrective treatment. When used as part of an educational strategy, the T-Scan can lead the patient to accept procedures that would benefit their long-term dental health. This chapter outlines the four stages of creating optimum dental health, the steps required to perform effective teaching and learning, the differing styles of teaching and learning utilized in educational forums, and how to best employ the technique of Feature, Function, and Benefit. A case study illustrates how T-Scan data can educate a patient about their own occlusal problems.


2018 ◽  
Vol 17 (2) ◽  
pp. 65-80
Author(s):  
Eva Stopková

The paper summarizes the geodetic contribution for the Slovak team within the joint Polish-Slovak archaeological mission at Tell el-Retaba in Egypt. Surveying work at archaeological excavations is usually influenced by somewhat specific subject of study and extreme conditions, especially at the missions in the developing countries. The case study describes spatial data development according to the archaeological conventions in order to document spatial relationships between the objects in excavated trenches. The long-term sustainability of surveying work at the site has been ensured by detailed metadata recording. Except the trench mapping, Digital Elevation Model has been calculated for the study area and for the north-eastern part of the site, with promising preliminary results for further detection and modelling of archaeological structures. In general, topographic mapping together with modern technologies like Photogrammetry, Satellite Imagery, and Remote Sensing provide valuable data sources for spatial and statistical modelling of the sites; and the results offer a different perspective for the archaeological research.


2020 ◽  
Vol 154 ◽  
pp. 04003
Author(s):  
Elżbieta Hałaj

Heat pumps become more and more popular heat source. They can be an alternative choice for obsolete coal fired boilers which are emissive and not ecological. During heat pump installation designing process, especially for heat pumps with higher heating capacity (for example those suppling larger buildings), a simulation of heat balance of ground heat source must be provided. A 3D heat transport model and groundwater flow in the geothermal heat source for heat pump (GSHP) installation was developed in FEFLOW according to Finite Element Modelling Method. The model consists of 25 borehole heat exchangers, arranged with spacing recommended by heat pump branch guidelines. The model consists of both a homogeneous, non-layered domain and a layered domain, which reflected differences in thermal properties of the ground and hydrogeological factors. The initial temperature distribution in the ground was simulating according to conditions typical for Europe in steady state heat flow. Optimal mesh refinement for nodes around borehole heat exchangers were calculated according to Nillert method. The aim of this work is to present influence of geological, hydrogeological factors and borehole arrangement in the energy balance and long term sustainability of the ground source. The thermal changes in the subsurface have been determined for a long term operation (30 years of operation period). Some thermal energy storage applications have also been considered.


2020 ◽  
Vol 4 (4) ◽  
pp. 83
Author(s):  
Vassilios Krassanakis ◽  
Anastasios L. Kesidis

The present study introduces a new MATLAB toolbox, called MatMouse, suitable for the performance of experimental studies based on mouse movements tracking and analysis. MatMouse supports the implementation of task-based visual search experiments. The proposed toolbox provides specific functions which can be utilized for the experimental building and mouse tracking processes, the analysis of the recorded data in specific metrics, the production of related visualizations, as well as for the generation of statistical grayscale heatmaps which could serve as an objective ground truth product. MatMouse can be executed as a standalone package or integrated in existing MATLAB scripts and/or toolboxes. In order to highlight the functionalities of the introduced toolbox, a complete case study example is presented. MatMouse is freely distributed to the scientific community under the third version of GNU General Public License (GPL v3) on GitHub platform.


2017 ◽  
Vol 152 ◽  
pp. 577-586 ◽  
Author(s):  
Edīte Biseniece ◽  
Gatis Žogla ◽  
Agris Kamenders ◽  
Reinis Purviņš ◽  
Kristaps Kašs ◽  
...  

Author(s):  
Gargi Kailkhura ◽  
Raphael Mandel ◽  
Amir Shooshtari ◽  
Michael Ohadi

Abstract The present study is an experimental investigation of a set of five additively-manufactured compact, lightweight, low-cost, air-to-water cross-media heat exchangers suitable for liquid cooling applications in desktop computers, among other applications. The heat transfer between the two fluids is facilitated by solid metallic wires arranged in a staggered tube-bank configuration, in direct contact with both fluids separated by polymer walls. Since the liquid flows externally over the wires instead of flowing inside the tubes in conventional tube-bank fin heat exchangers, smaller wires can be used in iCMHXs, resulting in lighter and more efficient units. The additively-manufactured iCMHX units are post-processed using a conformal polyurethane sealant. The units are experimentally studied in two case studies based on their post-processing techniques. The experimental studies include instrumentation calibration as well as uncertainty analysis. The first case study considers three geometrically identical iCMHX units sharing the same post-processing method. The overall iCMHX performances characterized by the thermal and hydrodynamic parameters, such as thermal resistance and pressure drop for both waterside and airside, are compared. Their experimental results are also compared to 2D CFD predictions. To provide probable reasoning behind the differences in the comparisons, a second case study is then carried out by experimentally investigating two iCMHX units but with variable post-processing approaches such as by using a thinned sealant and by using a single layer of sealant.


Wetlands ◽  
2014 ◽  
Vol 34 (4) ◽  
pp. 815-828 ◽  
Author(s):  
Ewa Jabłońska ◽  
Tomasz Falkowski ◽  
Jarosław Chormański ◽  
Filip Jarzombkowski ◽  
Stanisław Kłosowski ◽  
...  

2020 ◽  
Vol 29 (4) ◽  
pp. 2049-2067
Author(s):  
Karmen L. Porter ◽  
Janna B. Oetting ◽  
Loretta Pecchioni

Purpose This study examined caregiver perceptions of their child's language and literacy disorder as influenced by communications with their speech-language pathologist. Method The participants were 12 caregivers of 10 school-aged children with language and literacy disorders. Employing qualitative methods, a collective case study approach was utilized in which the caregiver(s) of each child represented one case. The data came from semistructured interviews, codes emerged directly from the caregivers' responses during the interviews, and multiple coding passes using ATLAS.ti software were made until themes were evident. These themes were then further validated by conducting clinical file reviews and follow-up interviews with the caregivers. Results Caregivers' comments focused on the types of information received or not received, as well as the clarity of the information. This included information regarding their child's diagnosis, the long-term consequences of their child's disorder, and the connection between language and reading. Although caregivers were adept at describing their child's difficulties and therapy goals/objectives, their comments indicated that they struggled to understand their child's disorder in a way that was meaningful to them and their child. Conclusions The findings showed the value caregivers place on receiving clear and timely diagnostic information, as well as the complexity associated with caregivers' understanding of language and literacy disorders. The findings are discussed in terms of changes that could be made in clinical practice to better support children with language and literacy disorders and their families.


Sign in / Sign up

Export Citation Format

Share Document