Conversion of Carbohydrates in Lignocellulosic Biomass after Chemical Pretreatment
The aim of the study was to determine the quantitative and qualitative changes taking place in biomass components actively participating in methane fermentation, i.e., in carbohydrates, as a result of chemical pretreatment. Analyses were conducted on agricultural waste (corn stover, also called corn straw, and corncobs) as materials most commonly used in methane fermentation, as well as poplar wood, a material relatively rarely used in biogas production. Pretreatment with the aim of increasing efficiency of methane fermentation was carried out with the use of acid and alkaline solutions of different concentrations. The effect of pretreatment on carbohydrates was analyzed based on the quantitative and qualitative changes in this component. Due to the structural heterogeneity of carbohydrates, their varied reactivity and fermentability were determined in terms of holocellulose, cellulose, and pentosans. The chemical structure of cellulose was also analyzed. It is shown in this study that chemical pretreatment causes transformations of carbohydrate components, which differ quantitatively and qualitatively in the compared raw materials. It was found that the alkaline treatment caused smaller changes in the percentage shares of the carbohydrate biomass components as compared to the acid treatment. Moreover, it was observed that the compared materials differ in terms of quantitative changes in their chemical composition depending on the composition of the raw material prior to pretreatment. In the case of corn waste subjected to the action of 1 and 3% NaOH, the share of pentosans in the biomass increased. It was established that this is a change with a positive effect on fermentation efficiency. The action of acids and alkalis on the biomass led to similar structural changes in cellulose, which are adverse for the fermentation process.