scholarly journals Effect of Silviculture on Carbon Pools during Development of a Ponderosa Pine Plantation

Forests ◽  
2020 ◽  
Vol 11 (9) ◽  
pp. 997
Author(s):  
Jie Zhang ◽  
Jianwei Zhang ◽  
Kim Mattson ◽  
Kaelyn Finley

Forest stands can be considered as dynamic carbon pools throughout their developmental stages. Silvicultural thinning and initial planting densities for reforestation not only manipulate the structure or composition of vegetation, but also disturb forest floor and soils, which, in turn, influences the dynamics of carbon pools. Understanding these carbon pools both spatially and temporally can provide useful information for land managers to achieve their management goals. Here, we estimated five major carbon pools in experimental ponderosa pine (Pinus ponderosa) plots that were planted to three levels of spacing and where competing vegetation was either controlled (VC) or not controlled (NVC). The objectives were to determine how an early competing vegetation control influences the long-term carbon dynamics and how stand density affects the maximum carbon (C) sequestration for these plantations. We found that planting density did not affect total ecosystem C at either sampling age 28 or 54. Because of competing vegetation ingrowth, the NVC (85 ± 14 Mg ha−1) accumulated greater C than the VC (61 ± 6 Mg ha−1) at age 28. By age 54, the differences between treatments narrow with the NVC (114 ± 11 Mg ha−1) and the VC (106 ± 11 Mg ha−1) as the pines continue to grow relatively faster in the VC when compared to NVC and C of ingrowth vegetation decreased in NVC, presumably due to shading by the overstory pines. The detritus was not significantly different among treatments in either years, although the mean forest floor and soil C was slightly greater in NVC. While NVC appears to sequester more C early on, the differences from the VC were rather subtle. Clearly, as the stands continue to grow, the C of the larger pines of the VC may overtake the total C of the NVC. We conclude that, to manage forests for carbon, we must pay more attention to promoting growth of overstory trees by controlling competing vegetation early, which will provide more opportunities for foresters to create resilient forests to disturbances and store C longer in a changing climate.

1994 ◽  
Vol 9 (2) ◽  
pp. 57-61 ◽  
Author(s):  
Philip M. McDonald ◽  
Gary O. Fiddler ◽  
Jay H. Kitzmiller

Abstract Three classes of ponderosa pine (Pinus ponderosa) seedlings (nursery-run, wind-pollinated, control-pollinated) were evaluated for stem height and diameter at the USDA Forest Service's Placerville Nursery and the Georgetown Ranger District in northern California. Pines in all three classes were grown with competing vegetation or maintained in a free-to-grow condition. Control-pollinated seedlings were statistically taller (P < 0.05) than nursery-run counterparts when outplanted, and after 1 and 2 growing seasons in the field with and without competition. They also had significantly larger diameters when outplanted and after 2 growing seasons in the field when free to grow. Wind-pollinated seedlings grew taller than nursery-run seedlings when free to grow. A large amount of competing vegetation [bearclover (Chamaebatia foliolosa)—29,490 plants per acre; herbaceous vegetation—11,500; hardwood sprouts—233; and whiteleaf manzanita (Arctostaphylos viscida) seedlings—100] ensure that future pine development will be tested rigorously. West. J. Appl. For. 9(2):00-00.


2020 ◽  
Vol 50 (9) ◽  
pp. 862-871 ◽  
Author(s):  
Thomas E. Kolb ◽  
Kelsey Flathers ◽  
John B. Bradford ◽  
Caitlin Andrews ◽  
Lance A. Asherin ◽  
...  

Trees in dry forests often regenerate in episodic pulses when wet periods coincide with ample seed production. Factors leading to success or failure of regeneration pulses are poorly understood. We investigated the impacts of stand thinning on survival and growth of the 2013 cohort of ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) seedlings in northern Arizona, United States. We measured seedling survival and growth over the first five growing seasons after germination in six stand basal areas (BAs; 0, 7, 14, 23, 34, and 66 (unthinned) m2·ha−1) produced by long-term experimental thinnings. Five-year survival averaged 2.5% and varied among BAs. Mean survival duration was longer in intermediate BAs (11 to 16 months) than in clearings and high BAs (5 months). The BAs of 7, 14, and 23 m2·ha−1 had >2600 5-year-old seedlings·ha−1. In contrast, regeneration was lower in the clearing (666 seedlings·ha−1) and failed completely in the 34 m2·ha−1 and unthinned treatments. Seedling survival was highest during wet years and lowest during drought years. Many surviving seedlings had no net height growth between years 4 and 5 because of stem browsing. Results indicate that natural regeneration of ponderosa pine is influenced by stand BA, drought, herbivory, and interactions between extreme climatic events.


1999 ◽  
Vol 14 (1) ◽  
pp. 35-40 ◽  
Author(s):  
E. J. Zlatnik ◽  
T. H. DeLuca ◽  
K. S. Milner ◽  
D. F. Potts

Abstract The USDA Forest Service built terraces on the Bitterroot National Forest in the 1960s and 1970s as a means of mechanical site preparation prior to machine-planting ponderosa pine (Pinus ponderosa) in clearcuts. We examined the influence of terracing on planted ponderosa pine and soil characteristics more than 20 yr after site treatment and planting. Replicated plots at three separate paired (terraced/unterraced) sites were measured for tree diameter at breast height (dbh), total tree volume, planted tree volume and height, and understory biomass. Soil samples were analyzed for total C, Bray-1 extractable P, exchangeable K, soil pH, soil water-holding capacity, and particle size distribution. Terraced sites had significantly higher tree volumes, heights, and dbh, and higher silt contents than unterraced sites. Two of the three terraced sites also had greater understory biomass than the unterraced sites. Soil C and nutrient concentrations on terraced and unterraced pairs were generally similar. West. J. Appl. For. 14(1):35-40.


2013 ◽  
Vol 43 (4) ◽  
pp. 311-320 ◽  
Author(s):  
Jianwei Zhang ◽  
Martin W. Ritchie ◽  
Douglas A. Maguire ◽  
William W. Oliver

We analyzed 45 years of data collected from three ponderosa pine (Pinus ponderosa Douglas ex P. Lawson & C. Lawson) levels-of-growing-stock installations in Oregon (OR) and northern California (CA), USA, to determine the effect of stand density regimes on stand productivity and mortality. We found that periodic annual increment (PAI) of diameter, basal area (BA), volume, and aboveground dry mass were significantly related to stand density index (SDI) and stand age at start of the period; the quadratic trends varied among sites. Precipitation departure from the normal for each period explained a significant amount of residual variation in all PAI variables except diameter. BA production did not change significantly as SDI exceeded 270 trees·ha−1 at the OR sites and 320 trees·ha−1 at the CA site. Stand productivity was the highest at Elliot Ranch (CA) and the least at Blue Mountains (OR). A similar trend held in growth efficiency under lower stand densities (SDI < 600). Most of the mortality was caused by Dendroctonus bark beetles in stands that exceeded SDI of 500 trees·ha−1. Limiting SDI was about 900 trees·ha−1, although plots at Elliot Ranch reached much higher than that. The results demonstrate that silvicultural control of stand density can be a powerful tool for reducing bark beetle caused mortality without sacrificing stand productivity.


1995 ◽  
Vol 10 (3) ◽  
pp. 91-94
Author(s):  
Darrell W. Ross

Abstract Second-growth ponderosa pine (Pinus ponderosa) stands with outbreak populations of the pandora moth (Coloradia pandora) were thinned from below removing about half of the basal area. Thinning had no effect on pandora moth pupal density or weight, or emerging adult density in the following generation. However, adult emergence and egg hatch occurred 7-10 days earlier in thinned plots compared with unthinned plots. Egg and larval densities on a foliage weight basis were not significantly different between thinned and unthinned plots. Thinning stands infested with pandora moth will not significantly affect the course of an outbreak for at least one generation. Timing of direct controls for the pandora moth should consider the effect of stand density on insect phenology. West. J. Appl. For. 10(3):91-94.


2012 ◽  
Vol 21 (3) ◽  
pp. 306 ◽  
Author(s):  
Chad M. Hoffman ◽  
Carolyn Hull Sieg ◽  
Joel D. McMillin ◽  
Peter Z. Fulé

Landscape-level bark beetle (Coleoptera: Curculionidae, Scolytinae) outbreaks occurred in Arizona ponderosa pine (Pinus ponderosa Dougl. ex Law.) forests from 2001 to 2003 in response to severe drought and suitable forest conditions. We quantified surface fuel loadings and depths, and calculated canopy fuels based on forest structure attributes in 60 plots established 5 years previously on five national forests. Half of the plots we sampled in 2007 had bark beetle-caused pine mortality and half did not have mortality. Adjusting for differences in pre-outbreak stand density, plots with mortality had higher surface fuel and lower canopy fuel loadings 5 years after the outbreak compared with plots without mortality. Total surface fuels averaged 2.5 times higher and calculated canopy fuels 2 times lower in plots with mortality. Nearly half of the trees killed in the bark beetle outbreak had fallen within 5 years, resulting in loadings of 1000-h woody fuels above recommended ranges for dry coniferous forests in 20% of the mortality plots. We expect 1000-h fuel loadings in other mortality plots to exceed recommended ranges as remaining snags fall to the ground. This study adds to previous work that documents the highly variable and complex effects of bark beetle outbreaks on fuel complexes.


2007 ◽  
Vol 37 (11) ◽  
pp. 2096-2105 ◽  
Author(s):  
Kelsey Sherich ◽  
Amy Pocewicz ◽  
Penelope Morgan

Trees respond to edge-to-interior microclimate differences in fragmented forests. To better understand tree physiological responses to fragmentation, we measured ponderosa pine ( Pinus ponderosa Dougl. ex P. & C. Laws) and Douglas-fir ( Pseudotsuga menziesii (Mirbel) Franco) leaf area, crown ratios, sapwood area, basal area (BA) growth rates, and BA growth efficiency at 23 long-established (>50 year) forest edges in northern Idaho. Trees located at forest edges had more leaf area, deeper crowns, higher BA growth rates, and more sapwood area at breast height than interior trees. Ponderosa pine had significantly higher BA growth efficiency at forest edges than interiors, but Douglas-fir BA growth efficiency did not differ, which may relate to differences in photosynthetic capacity and drought and shade tolerance. Edge orientation affected BA growth efficiency, with higher values at northeast-facing edges for both species. Edge effects were significant even after accounting for variation in stand density, which did not differ between the forest edge and interior. Although edge trees had significantly greater canopy depth on their edge-facing than forest-facing side, sapwood area was evenly distributed. We found no evidence that growing conditions at the forest edge were currently subjecting trees to stress, but higher leaf area and deeper crowns could result in lower tolerance to future drought conditions.


2002 ◽  
Vol 32 (8) ◽  
pp. 1360-1371 ◽  
Author(s):  
R C Godfree ◽  
R O Tinnin ◽  
R B Forbes

We investigated the importance of lodgepole pine dwarf mistletoe (Arceuthobium americanum Nutt.) in determining the height to crown top (HCT), height to crown base (HCB), and live crown ratio (LCR) of 2025 lodgepole pine (Pinus contorta var. murrayana (Grev. & Balf.) Engelm.) growing over a 24-km2 study site in central Oregon. We compared the effects of infection and associated witches' brooms with those of site topography, soil type, shrub cover, stand density, and the abundance of mature ponderosa pine (Pinus ponderosa Dougl. ex P. Laws. & C. Laws). using multiple regression and path analysis. The density of dominant-size P. contorta was consistently the most important factor influencing HCT, HCB, and LCR across the study site. In dense stands, trees tended to have elevated crown bases due to self-pruning and, hence, lower values of LCR. Dwarf mistletoe and related witches' brooms uniquely explained 6.9% of the variance in LCR, which was close to that of dominant P. contorta (7.1%) and more than that of soil type (3.0%), but explained only 2.6% of the variance in HCB, which was less than that of dominant P. contorta (6.5%) and soil type (4.6%). Regression models suggest that heavily infected trees should be 18% shorter and have crown bases 37% lower than uninfected trees, while moderately infected trees should have an LCR over 20% larger than that of uninfected and heavily infected trees. We also found that the largest 25 heavily infected trees sampled were approximately 19% shorter and 11–13% smaller in diameter than the largest 25 uninfected trees. The results suggest that dwarf mistletoe can be an important factor in determining the crown dimensions of P. contorta but that these effects may be interpreted only in the context of site characteristics and stand structure.


1999 ◽  
Vol 29 (7) ◽  
pp. 1027-1038 ◽  
Author(s):  
Robert F Powers ◽  
Phillip E Reynolds

Factorial combinations of vegetation, nutrient, and insect control treatments were applied repeatedly to three contrasting California plantations of Pinus ponderosa var. ponderosa Dougl. ex Laws. Ten-year findings show that potential productivity is far greater than previously believed. Stem volume gains were linked directly with increases in crown volume. Insect problems were negligible. Vegetation control increased tree growth profoundly on xeric sites but less so on the most mesic. Where soil was both droughty and infertile, growth responses traced primarily to improved soil moisture availability and secondarily to better nutrition. The most fertile site also was droughty, and trees responded only to improved moisture availability. Water was less limiting on the most productive site. There, both fertilizers and herbicides triggered similar, substantive growth increases. Drought from both plant competition and climate reduced stomatal conductance, xylem water potential, and net assimilation rates. Assimilation rates increased linearly with site index, but treatment differences were not apparent once drought had peaked. Fertilization improved water-use efficiency where water stress was not extreme. Advantages in water availability to pines from vegetation control will dissipate as tree crowns close and transpiration rises.


Sign in / Sign up

Export Citation Format

Share Document