scholarly journals A Band Model of Cambium Development: Opportunities and Prospects

Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1361
Author(s):  
Vladimir V. Shishov ◽  
Ivan I. Tychkov ◽  
Kevin J. Anchukaitis ◽  
Grigory K. Zelenov ◽  
Eugene A. Vaganov

More than 60% of tree phytomass is concentrated in stem wood, which is the result of periodic activity of the cambium. Nevertheless, there are few attempts to quantitatively describe cambium dynamics. In this study, we develop a state-of-the-art band model of cambium development, based on the kinetic heterogeneity of the cambial zone and the connectivity of the cell structure. The model describes seasonal cambium development based on an exponential function under climate forcing which can be effectively used to estimate the seasonal cell production for individual trees. It was shown that the model is able to simulate different cell production for fast-, middle- and slow-growing trees under the same climate forcing. Based on actual measurements of cell production for two contrasted trees, the model effectively reconstructed long-term cell production variability (up to 75% of explained variance) of both tree-ring characteristics over the period 1937−2012. The new model significantly simplifies the assessment of seasonal cell production for individual trees of a studied forest stand and allows the entire range of individual absolute variability in the ring formation of any tree in the stand to be quantified, which can lead to a better understanding of the anatomy of xylem formation, a key component of the carbon cycle.

Author(s):  
L.V. Vetchinnikova ◽  
◽  
A.F. Titov ◽  
◽  

The article reports on the application of the best known principles for mapping natural populations of curly (Karelian) birch Betula pendula Roth var. carelica (Mercklin) Hämet-Ahti – one of the most appealing representatives of the forest tree flora. Relying on the synthesis and analysis of the published data amassed over nearly 100 years and the data from own full-scale studies done in the past few decades almost throughout the area where curly birch has grown naturally, it is concluded that its range outlined in the middle of the 20th century and since then hardly revised is outdated. The key factors and reasons necessitating its revision are specified. Herewith it is suggested that the range is delineated using the population approach, and the key element will be the critical population size below which the population is no longer viable in the long term. This approach implies that the boundaries of the taxon range depend on the boundaries of local populations (rather than the locations of individual trees or small clumps of trees), the size of which should not be lower than the critical value, which is supposed to be around 100–500 trees for curly birch. A schematic map of the curly birch range delineated using this approach is provided. We specially address the problem of determining the minimum population size to secure genetic diversity maintenance. The advantages of the population approach to delineating the distribution range of curly birch with regard to its biological features are highlighted. The authors argue that it enables a more accurate delineation of the range; shows the natural evolutionary history of the taxon (although it is not yet officially recognized as a species) and its range; can be relatively easily updated (e.g. depending on the scope of reintroduction); should be taken into account when working on the strategy of conservation and other actions designed to maintain and regenerate this unique representative of the forest tree flora.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Natalia Izotova ◽  
Christine Rivat ◽  
Cristina Baricordi ◽  
Elena Blanco ◽  
Danilo Pellin ◽  
...  

AbstractOur mathematical model of integration site data in clinical gene therapy supported the existence of long-term lymphoid progenitors capable of surviving independently from hematopoietic stem cells. To date, no experimental setting has been available to validate this prediction. We here report evidence of a population of lymphoid progenitors capable of independently maintaining T and NK cell production for 15 years in humans. The gene therapy patients of this study lack vector-positive myeloid/B cells indicating absence of engineered stem cells but retain gene marking in both T and NK. Decades after treatment, we can still detect and analyse transduced naïve T cells whose production is likely maintained by a population of long-term lymphoid progenitors. By tracking insertional clonal markers overtime, we suggest that these progenitors can support both T and NK cell production. Identification of these long-term lymphoid progenitors could be utilised for the development of next generation gene- and cancer-immunotherapies.


2018 ◽  
Vol 48 (9) ◽  
pp. 1108-1113 ◽  
Author(s):  
Gabriel Sangüesa-Barreda ◽  
J. Julio Camarero ◽  
Jan Esper ◽  
J. Diego Galván ◽  
Ulf Büntgen

Long-term fluctuations in forest recruitment, at time scales well beyond the life-span of individual trees, can be related to climate changes. The underlying climatic drivers are, however, often understudied. Here, we present the recruitment history of a high-elevation mountain pine (Pinus uncinata Ram.) forest in the Spanish central Pyrenees throughout the last millennium. A total of 1108 ring-width series translated into a continuous chronology from 924 to 2014 CE, which allowed estimated germination dates of 470 trees to be compared against decadal-scale temperature variability. High recruitment intensity mainly coincided with relatively warm periods in the early 14th, 15th, 19th, and 20th centuries, whereas cold phases during the mid-17th, early 18th, and mid-19th centuries overlapped with generally low recruitment rates. In revealing the importance of prolonged warm conditions for high-elevation pine recruitment in the Pyrenees, this study suggests increased densification and even possible upward migration of tree-line ecotones under predicted global warming.


2016 ◽  
Vol 20 (7) ◽  
pp. 2877-2898 ◽  
Author(s):  
Hannes Müller Schmied ◽  
Linda Adam ◽  
Stephanie Eisner ◽  
Gabriel Fink ◽  
Martina Flörke ◽  
...  

Abstract. When assessing global water resources with hydrological models, it is essential to know about methodological uncertainties. The values of simulated water balance components may vary due to different spatial and temporal aggregations, reference periods, and applied climate forcings, as well as due to the consideration of human water use, or the lack thereof. We analyzed these variations over the period 1901–2010 by forcing the global hydrological model WaterGAP 2.2 (ISIMIP2a) with five state-of-the-art climate data sets, including a homogenized version of the concatenated WFD/WFDEI data set. Absolute values and temporal variations of global water balance components are strongly affected by the uncertainty in the climate forcing, and no temporal trends of the global water balance components are detected for the four homogeneous climate forcings considered (except for human water abstractions). The calibration of WaterGAP against observed long-term average river discharge Q significantly reduces the impact of climate forcing uncertainty on estimated Q and renewable water resources. For the homogeneous forcings, Q of the calibrated and non-calibrated regions of the globe varies by 1.6 and 18.5 %, respectively, for 1971–2000. On the continental scale, most differences for long-term average precipitation P and Q estimates occur in Africa and, due to snow undercatch of rain gauges, also in the data-rich continents Europe and North America. Variations of Q at the grid-cell scale are large, except in a few grid cells upstream and downstream of calibration stations, with an average variation of 37 and 74 % among the four homogeneous forcings in calibrated and non-calibrated regions, respectively. Considering only the forcings GSWP3 and WFDEI_hom, i.e., excluding the forcing without undercatch correction (PGFv2.1) and the one with a much lower shortwave downward radiation SWD than the others (WFD), Q variations are reduced to 16 and 31 % in calibrated and non-calibrated regions, respectively. These simulation results support the need for extended Q measurements and data sharing for better constraining global water balance assessments. Over the 20th century, the human footprint on natural water resources has become larger. For 11–18% of the global land area, the change of Q between 1941–1970 and 1971–2000 was driven more strongly by change of human water use including dam construction than by change in precipitation, while this was true for only 9–13 % of the land area from 1911–1940 to 1941–1970.


1997 ◽  
Vol 6 (2) ◽  
pp. 130-139 ◽  
Author(s):  
JURGEN ALHEIT ◽  
EBERHARD HAGEN
Keyword(s):  

2014 ◽  
Vol 21 (2) ◽  
pp. 594-604 ◽  
Author(s):  
Bryan A. Black ◽  
Jason B. Dunham ◽  
Brett W. Blundon ◽  
Jayne Brim-Box ◽  
Alan J. Tepley

1981 ◽  
Vol 59 (3) ◽  
pp. 342-348 ◽  
Author(s):  
C. H. A. Little

Dormant attached or detached shoots of balsam fir were naturally or artificially chilled to induce different states along the rest–quiescence continuum. At the end of the chilling pretreatment, the shoots either were left intact or were debudded and treated with indol-3-ylacetic acid (IAA). The shoots were placed under controlled-environment conditions favorable for growth, and at intervals thereafter, a pulse of [1-14C]IAA was applied to the shoot apex. Measured at the end of the chilling pretreatment, [14C]IAA velocity and flux decreased with increasing duration of chilling (i.e., as rest graded into quiescence). The time required to commence cambial growth and to attain maximum rates of cambial activity and [14C]IAA transport also decreased as rest changed to quiescence. Transport in actively growing shoots exceeded that in quiescent shoots, but was similar to that in resting shoots. The [14C]IAA pulse moved basipetally as unchanged IAA, was blocked by a bark + cambium girdle, and was inhibited by abscisic acid and long-term application of exogenous IAA. The results indicate that: (1) the long-distance, cambium-located, IAA transport system demonstrated in dicotyledonous species also operates in conifers, (2) during the dormant period changes occur in [14C]IAA transport and in the cambial response to exogenous IAA, (3) the change in [14C]IAA transport is the result of change in the transporting capability of cells in the cambial zone, and (4) the change in [14C]IAA transport is not the cause of the differential response of quiescent and resting cambia to exogenous IAA.


1990 ◽  
Vol 14 ◽  
pp. 358-358
Author(s):  
Mary Jo Spencer ◽  
Paul A. Mayewski ◽  
W. Berry Lyons ◽  
Mark S. Twickler ◽  
Pieter Grootes

In 1984 a 200-m ice core was collected from a local accumulation basin in the Dominion Range, Transantarctic Mountains, Antarctica. A complete oxygen isotope record has been obtained and a considerable portion of the core has been analyzed in detail for chloride, nitrate, sulfate, and sodium. About half of the chloride is due to sea salt with the remainder originating as gaseous HCl. Nitrate levels have increased markedly over the last 1000 years whereas the levels of the other constituents have remained fairly constant.The oxygen isotope results suggest that this region of Antarctica is responding to long-term global climate forcing as well as to shorter-term climatic variations. This data will be compared with the anion and sodium records in order to determine the effects of climatic forcing on these other records. In particular, nitrate appears to vary in concert with fluctuations in long-term climate. Additionally, variations in each constituent over the 3500 year period will be examined in detail to determine the influence of other processes which affect their concentrations.


Energies ◽  
2020 ◽  
Vol 13 (7) ◽  
pp. 1624
Author(s):  
Nelson Thambiraj ◽  
Ivar Waernhus ◽  
Crina Suciu ◽  
Arild Vik ◽  
Alex C. Hoffmann

This paper studies the robustness of off-shore solid oxide fuel cell (SOFC) installations and the nature and causes of possible cell degradation in marine environments. Two important, cathode-related, impediments to ensuring SOFC reliability in off-shore installations are: cathode degradation due to salt contamination and oxygen depletion in the air supply. Short-term and long-term tests show the effect of salt contamination in the cathode feed on cell performance, and reveal the underlying cause of the degradation seen. SEM/X-ray Diffraction/(XRD) analyses made it possible to identify salt taken up in the cathode microstructure after the short-term testing while the macroscopic cell structure remained intact after the short-term tests. The long-term degradation was found to be more severe, and SEM images showed delamination at the cathode/electrolyte interface with salt present, something that was not seen after long-term testing without salt. The effect of oxygen depletion on the performance was also determined at three different temperatures using I-V curves.


1993 ◽  
Vol 8 (1) ◽  
pp. 24-27
Author(s):  
K. Leroy Dolph ◽  
Gary E. Dixon

Abstract Erroneous predictions of forest growth and yield may result when computer simulation models use extrapolated data in repeated or long-term projections or if the models are used outside the range of data on which they were built. Bounding functions that limit the predicted diameter and height growth of individual trees to maximum observed values were developed to constrain these erroneous predictions in a forest growth and yield simulator. Similar techniques could be useful for dealing with extrapolated data in other types of simulation models. West. J. Appl. For. 8(1):24-27.


Sign in / Sign up

Export Citation Format

Share Document