scholarly journals Present and Future Climate-Related Distribution of Narrow- versus Wide-Ranged Ostrya Species in China

Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1366
Author(s):  
Shuang-Li Tang ◽  
Yao-Bin Song ◽  
Bo Zeng ◽  
Ming Dong

The niche breadth–range size hypothesis states that geographic range size of a species is positively correlated with its environmental niche breadth. We test this hypothesis and examine whether the correlation varies with climate change and among taxa through modeling (processing Maximum entropy (Maxent)) potential distributions in present and future climate scenario of four sympatric Ostrya species in China and with different geographic range sizes, including extremely rare O. rehderiana. Potential geographical distributions of narrow- versus wide-ranged Ostrya species were predicted based on their niche breadths. Niche equivalency and similarity tests were performed to examine niche overlap between species pairs. Potential distribution areas of wide niche breadth species (O. japonica and O. trichocarpa) were significantly wider than those of narrow niche breadth species (O. multinervis and O. rehderiana) although niche divergence was hardly observed among them. In the future scenarios of global climate change, wide-ranged O. japonica would have wider potential distribution than in the current scenario, even expanding their geographic range. Conversely, suitable habitats of narrow-ranged O. multinervis and O. rehderiana would be reduced strikingly in future scenarios compared to in the current scenario, and they might be subjected to a high risk of extinction. Potential distribution range sizes of the Ostrya species would positively correlate with their niche breadths in future scenarios, and their niche breadths would determine their distribution variation with climate change. The Ostrya species having broader niche currently would be further widespread in future scenarios while narrowly distributed Ostrya species having narrower niche currently would further reduce their distribution range under changed climate and might be subjected to a high risk of extinction in future scenarios. Our results support the range size–niche breadth hypothesis both at present and future climate scenarios, and they provide useful reference for conservation of rare species like O. rehderiana.

2021 ◽  
Vol 25 ◽  
pp. 194008292110308
Author(s):  
Antonio Acini Vásquez-Aguilar ◽  
Juan Francisco Ornelas ◽  
Flor Rodríguez-Gómez ◽  
M. Cristina MacSwiney G.

Global climate change is associated with changes in precipitation patterns and an increase in extreme weather events, which might shift the geographic distribution of species. Despite the importance of this topic, information is lacking for many species, particularly tropical birds. Here, we developed species distribution models (SDMs) to evaluate future projections of the distribution of the widespread Buff-bellied Hummingbird ( Amazilia yucatanensis) and for each of the recognized subspecies ( A. y. yucatanensis, A. y. cerviniventris, A. y. chalconota), under climate change scenarios. Using SDMs we evaluate current and future projections of their potential distribution for four Representative Concentration Pathway (RCPs) for the years 2050 and 2070. We also calculated the subspecies climatic niche breadth to test the relationship between their area of distribution and climatic niche breadth and their niche overlap. Future climate-change models suggested a small increase in the potential distribution of the species and the subspecies A. y. yucatanensis, but the predicted potential geographic range decreased in A. y. chalconota and remained unaffected in A. y. cerviniventris. The climatic niche of A. y. cerviniventris contained part niche space of A. y. yucatanensis and part of A. y. chalconota, but the climatic niches of A. y. yucatanensis and A. y. chalconota did not overlap. Our study highlights the importance of correctly choosing the taxonomic unit to be analyzed because subspecies will respond in a different manner to future climate change; therefore, conservation actions must consider intrinsic requirements of subspecies and the environmental drivers that shape their distributions.


Oecologia ◽  
2021 ◽  
Author(s):  
Kristen R. Haynes ◽  
Jannice Friedman ◽  
John C. Stella ◽  
Donald J. Leopold

Climate ◽  
2021 ◽  
Vol 9 (1) ◽  
pp. 16
Author(s):  
Suzanna Meeussen ◽  
Anouschka Hof

Climate change is expected to have an impact on the geographical distribution ranges of species. Endemic species and those with a restricted geographic range may be especially vulnerable. The Persian jird (Meriones persicus) is an endemic rodent inhabiting the mountainous areas of the Irano-Turanian region, where future desertification may form a threat to the species. In this study, the species distribution modelling algorithm MaxEnt was used to assess the impact of future climate change on the geographic distribution range of the Persian jird. Predictions were made under two Representative Concentration Pathways and five different climate models for the years 2050 and 2070. It was found that both bioclimatic variables and land use variables were important in determining potential suitability of the region for the species to occur. In most cases, the future predictions showed an expansion of the geographic range of the Persian jird which indicates that the species is not under immediate threat. There are however uncertainties with regards to its current range. Predictions may therefore be an over or underestimation of the total suitable area. Further research is thus needed to confirm the current geographic range of the Persian jird to be able to improve assessments of the impact of future climate change.


2020 ◽  
Vol 8 ◽  
Author(s):  
Pablo Medrano-Vizcaíno ◽  
Patricia Gutiérrez-Salazar

Nasuella olivacea is an endemic mammal from the Andes of Ecuador and Colombia. Due to its rarity, aspects about its natural history, ecology and distribution patterns are not well known, therefore, research is needed to generate knowledge about this carnivore and a first step is studying suitable habitat areas. We performed Ecological Niche Models and applied future climate change scenarios (2.6 and 8.5 RCP) to determine the potential distribution of this mammal in Colombia and Ecuador, with current and future climate change conditions; furthermore, we analysed its distribution along several land covers. We found that N. olivacea is likely to be found in areas where no records have been reported previously; likewise, climate change conditions would increase suitable distribution areas. Concerning land cover, 73.4% of N. olivacea potential distribution was located outside Protected Areas (PA), 46.1% in Forests and 40.3% in Agricultural Lands. These findings highlight the need to further research understudied species, furthering our understanding about distribution trends and responses to changing climatic conditions, as well as informig future PA designing. These are essential tools for supporting wildlife conservation plans, being applicable for rare species whose biology and ecology remain unknown.


2019 ◽  
Vol 111 ◽  
pp. 06006 ◽  
Author(s):  
Matteo Bilardo ◽  
Maria Ferrara ◽  
Enrico Fabrizio

In Europe, the second recast of EPBD promotes long-term strategies to accelerate the path to nZEBs, fostering the cost-optimized building design already suggested in the EPBD first recast. Since the nZEB design is a complex optimization problem that is subjected to uncertainty in its boundary conditions (climate, technologies, market, ...), it is necessary to guarantee the resilience of the NZEB optimal design to possible variations of future scenarios, especially as regards the climate change. This work applies the new EdeSSOpt methodology (Energy Demand and Supply Simultaneous Optimization) developed by the Authors aiming at investigating the variation of the cost-optimized multi-family building design in different Italian future climate scenarios, therefore considering parameters related to the building envelope, energy systems and renewable energy sources. The method is implemented into the TRNSYS® (energy model), GenOpt (optimizer) and WeatherShift® (future climate scenario generator) tools. The resulting cost-optimal solutions in future scenarios are related to a lower global cost and a decreased total primary energy consumption. Beyond the future trends of such performance indexes, the fact that most of technical solutions associated with the optimal solutions have not changed with the studied climate scenarios, indicates a certain resilience of the optimal design variables facing climate change.


2020 ◽  
Vol 12 (4) ◽  
pp. 1491
Author(s):  
Xuhui Zhang ◽  
Haiyan Wei ◽  
Zefang Zhao ◽  
Jing Liu ◽  
Quanzhong Zhang ◽  
...  

The potential distribution of the invasive plant Anredera cordifolia (Tenore) Steenis was predicted by Random Forest models under current and future climate-change pathways (i.e., RCP4.5 and RCP8.5 of 2050s and the 2070s). Pearson correlations were used to select variables; the prediction accuracy of the models was evaluated by using AUC, Kappa, and TSS. The results show that suitable future distribution areas are mainly in Southeast Asia, Eastern Oceania, a few parts of Eastern Africa, Southern North America, and Eastern South America. Temperature is the key climatic factor affecting the distribution of A. cordifolia. Important metrics include mean temperature of the coldest quarter (0.3 °C ≤ Bio11 ≤ 22.9 °C), max temperature of the warmest month (17.1 °C ≤ Bio5 ≤ 35.5 °C), temperature annual range (10.7 °C ≤ Bio7 ≤ 33 °C), annual mean air temperature (6.8 °C ≤ Bio1 ≤ 24.4 °C), and min temperature of coldest month (−2.8 °C ≤ Bio6 ≤ 17.2 °C). Only one precipitation index (Bio19) was important, precipitation of coldest quarter (7 mm ≤ Bio19 ≤ 631 mm). In addition, areas with strong human activities are most prone to invasion. This species is native to Brazil, but has been introduced in Asia, where it is widely planted and has escaped from cultivation. Under the future climate scenarios, suitable habitat areas of A. cordifolia will expand to higher latitudes. This study can provide a reference for the rational management and control of A. cordifolia.


2019 ◽  
Vol 45 (2) ◽  
pp. 215-228 ◽  
Author(s):  
André Felipe de Araujo Lira ◽  
Raúl Badillo-Montaño ◽  
Andrés Lira-Noriega ◽  
Cleide Maria Ribeiro de Albuquerque

Author(s):  
Fang Wang ◽  
Duo Wang ◽  
Ge Guo ◽  
Meixia Zhang ◽  
Jiayi Lang ◽  
...  

Abstract Ceroplastes cirripediformis Comstock is one of the most destructive invasive pests that have caused various negative impacts to agricultural, ornamental, and greenhouse plants. Since it is time- and labor-consuming to control C. cirripediformis, habitat evaluation of this pest may be the most cost-effective method for predicting its dispersal and avoiding its outbreaks. Here, we evaluated the effects of climatic variables on distribution patterns of C. cirripediformis and produced a global risk map for its outbreak under current and future climate scenarios using the Maximum Entropy (MaxEnt) model. Our results showed that mean temperature of driest quarter (Bio 9), precipitation of coldest quarter (Bio 19), precipitation of warmest quarter (Bio 18), and mean temperature of wettest quarter (Bio 8) were the main factors influencing the current modeled distribution of C. cirripediformis, respectively, contributing 41.9, 29.4, 18.8, and 7.9%. The models predicted that, globally, potential distribution of C. cirripediformis would be across most zoogeographical regions under both current and future climate scenarios. Moreover, in the future, both the total potential distribution region and its area of highly suitable habitat are expected to expand slightly in all representative concentration pathway scenarios. The information generated from this study will contribute to better identify the impacts of climate change upon C. cirripediformis’s potential distribution while also providing a scientific basis for forecasting insect pest spread and outbreaks. Furthermore, this study serves an early warning for the regions of potential distribution, predicted as highly suitable habitats for this pest, which could promote its prevention and control.


Sign in / Sign up

Export Citation Format

Share Document