scholarly journals Pepsin Hydrolysis of Orange By-Products for the Production of Bioactive Peptides with Gastrointestinal Resistant Properties

Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 679
Author(s):  
Seyadeh Narges Mazloomi ◽  
Alireza Sadeghi Mahoonak ◽  
Leticia Mora ◽  
Mohammad Ghorbani ◽  
Gholamreza Houshmand ◽  
...  

Recently, the use of bioactive compounds in improving human health has received more attention. The aim of the present study was to hydrolyze orange seed proteins using pepsin enzyme to obtain bioactive peptides as well as to study the stability of such activity after simulated gastrointestinal digestion conditions. The method was optimized using different enzyme concentrations from 1% to 3%, hydrolysis times between 2 and 5 h, and an optimal temperature of 33 °C. Biological activities including α-glucosidase inhibition, α-amylase inhibition, Angiotensin I-Converting Enzyme (ACEI) inhibition, ferric reducing antioxidant power, and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity were evaluated. According to the results, a significant higher value of the biological activity (p < 0.05) was observed using an enzyme ratio of 0.03 E/S and hydrolysis time of 3.5 h. After size-exclusion chromatography separation, fractions 45–49 and 50–54 showed the highest biological roles such as antioxidant, ACEI inhibitory, and hypoglycemic. Fractions with the highest biological activity were purified using RP-HPLC and analyzed using nano-liquid chromatography and mass spectrometry. The results obtained after simulated gastrointestinal digestion indicated that peptide fractions obtained after chromatographic separation significantly maintain their activity.

Foods ◽  
2020 ◽  
Vol 9 (9) ◽  
pp. 1217
Author(s):  
Seyadeh Narges Mazloomi ◽  
Leticia Mora ◽  
M-Concepción Aristoy ◽  
Alireza Sadeghi Mahoonak ◽  
Mohammad Ghorbani ◽  
...  

In this study, orange seed proteins were hydrolyzed by Alcalase enzyme at different enzyme concentrations 1–3% (v/w) and hydrolysis times (2–5 h), to obtain bioactive peptides showing antioxidant, Angiotensin-converting enzyme (ACE) -inhibitory, and hypoglycemic activities. The highest biological activities (p < 0.05) were achieved by using a hydrolysis time of 5 h and an enzyme concentration of 2%. Orange seed protein hydrolysate (OSPH) was prepared under these conditions, and peptides were isolated and purified by using size-exclusion chromatography and high-performance liquid chromatography, respectively. The fractions that showed the highest biological activities were analyzed by mass spectrometry in tandem, and a total of 63 peptide sequences were found. Moreover, the effect of simulated gastrointestinal digestion on the bioactivity of the fractions was studied, and the novel peptide sequences generated were also identified. Overall, despite there being some differences in the profile of peptide sequences obtained, the main results showed non-significant differences in the analyzed bioactivities after simulated gastrointestinal digestion.


2020 ◽  
Vol 10 (2) ◽  
pp. 145-152 ◽  
Author(s):  
Imane Rihab Mami ◽  
Rania Belabbes ◽  
Mohammed El Amine Dib ◽  
Boufeldja Tabti ◽  
Jean Costa ◽  
...  

Background: Carthamus caeruleus belongs to the Asteraceae family. The roots are traditionally used as healing agents. They help to heal burns and treat skin diseases. They are also used against joint inflammation and are very effective against diseases such as irritable bowel syndrome for cancer patients. Objectives: The purpose of this work was i) to study the chemical composition of i) the essential oil and hydrosol extract of Carthamus caeruleus, ii) to isolate the major component of both extracts and iii) to evaluate their antioxidant, antifungal and insecticidal activities. Methods: The essential oil and hydrosol extract obtained from the roots were studied by GC and GC/MS. The antioxidant activities were performed using two different methods i) Radical scavenging activity (DPPH) and ii) the Ferric-Reducing Antioxidant Power (FRAP), using BHT as a positive control. Whereas, the antifungal activity of the essential oil and Carlina oxide was investigated against plant fungi. The fumigation toxicity of C. caeruleus essential oil besides Carlina oxide was evaluated against adults of Bactrocera oleae better known as the olive fly. Results: The essential oil and hydrosol extract were mainly represented by acetylenic compounds such as carline oxide and 13-methoxy carline oxide. Carlina oxide was isolated and identified by 1H and 13C NMR spectroscopic means. The results showed that Carlina oxide presented interesting antioxidant and antifungal properties, while C. caeruleus root essential oil had better insecticidal activity. Furthermore, Carlina oxide has demonstrated promising in vivo antifungal activity to control infection of apples by Penicillium expansum. Conclusion: Carlina oxide can be used as a natural food preservative and alternative to chemical fungicides to protect stored apple against Penicillium expansum.


Molecules ◽  
2021 ◽  
Vol 26 (7) ◽  
pp. 2033
Author(s):  
Chuleeporn Bungthong ◽  
Sirithon Siriamornpun

Silk proteins have many advantageous components including proteins and pigments. The proteins—sericin and fibroin—have been widely studied for medical applications due to their good physiochemical properties and biological activities. Various strains of cocoon display different compositions such as amino-acid profiles and levels of antioxidant activity. Therefore, the objectives of this study were to find a suitable silk protein extraction method to obtain products with chemical and biological properties suitable as functional foods in two strains of Bombyx mori silk cocoon (Nangsew strains; yellow cocoon) and Samia ricini silk cocoon (Eri strains; white cocoon) extracted by water at 100 °C for 2, 4, 6 and 8 h. The results showed that Nangsew strains extracted for 6 h contained the highest amounts of protein, amino acids, total phenolics (TPC) and total flavonoids (TFC), plus DPPH radical-scavenging activity, ABTS radical scavenging capacity, and ferric reducing antioxidant power (FRAP), anti-glycation, α-amylase and α-glucosidase inhibition. The longer extraction time produced higher concentrations of amino acids, contributing to sweet and umami tastes in both silk strains. It seemed that the bitterness decreased as the extraction time increased, resulting in improvements in the sweetness and umami of silk-protein extracts.


2020 ◽  
Vol 42 (1) ◽  
pp. 109-109
Author(s):  
Hao Zang Hao Zang ◽  
Qian Xu Qian Xu ◽  
Luyun Zhang Luyun Zhang ◽  
Guangqing Xia Guangqing Xia ◽  
Jiaming Sun and Junyi Zhu Jiaming Sun and Junyi Zhu

A series of hydroxytyrosol (HT) derivatives were synthesized by modification of alcohol hydroxyl group of HT, twenty-five target compounds were obtained and characterized by NMR and HRMS. The antioxidant activities of those compounds were evaluated in three different assays. Except 3e and 3y, all other compounds demonstrated significant 2,2and#39;-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) free radical cation scavenging activity ranging from IC50 3.4 to 24.4 μM, which were more potent than L-ascorbic acid (IC50=24.8 μM). Compounds 3b-3d, 3f-3k, 3m-3x were better than Trolox (18.3 M). Moreover, the ferric reducing antioxidant power (FRAP) of all compounds were discovered to be more potent than L-ascorbic acid (40.7 mmol/g), except 3e, all other compounds (141.5-202.1 mmol/g) were better than Trolox (94.7 mmol/g). Compounds 3a-3d, 3f-3j, 3l-3m, 3o, 3q, 3t, 3v-3y exhibited more potent hydroxyl radical scavenging activity (IC50=245.1-475.1 M) than L-ascorbic acid (554.4 M) and Trolox (500.4 M). Compounds 3q, 3t and 3y exhibited more potent -Glucosidase inhibition activity (39.1-52.4 M) than Acarbose (60.9 M). Compounds 3a, 3d, 3f-3m, 3s-3t, 3v-3y showed some acetylcholinesterase inhibition activities, compounds 3a, 3d, 3f-3j, 3l-3m, 3o-3p, 3s-3t, 3w showed some butyrylcholinesterase inhibition activities.


2020 ◽  
Vol 12 (7) ◽  
pp. 2650
Author(s):  
Dung Huynh Thi Le ◽  
Wen-Chien Lu ◽  
Po-Hsien Li

Palmyra palm (Borassus flabellifer Linn.) is an important sugar-producing plant that is widely distributed in tropical Asian countries. Its jaggery and sweet sap are prevalent in Cambodia as a substitute for table sugar. They contain essential minerals, vitamins, and biological compounds. We investigated the changes in the nutritional composition, antioxidant properties, and biological activity of palm granulated sugar prepared by using three different drying–solidification processes under vacuum conditions: the drying temperature was controlled at 80 °C, 90 °C, and 100 °C, and the drying time was 60, 75, and 90 min, respectively. Palm granulated sugar contains 10 kinds of vitamins (mainly vitamin E 52.15–55.12 mg/100 g), 5-hydroxymethylfurfural (2.18 to 41.92 mg/100 g), and 38 volatile compounds that belong to the alcohol, ketones, pyrazines, acids, and phenols groups, and an aldehyde group. Moreover, palm granulated sugar exhibits a high total phenolic content (2.77–8.94 mg gallic acid equivalent/100 g), 2,2-diphenyl-1-1picrylhydrazyl (DPPH) radical scavenging activity (20.15%–37.88%), and ferric reducing antioxidant power (FRAP) value (322.68–378.23 μmol Fe2+/mL). Furthermore, palm granulated sugar-treated NIH3T3 cells showed a higher cell viability of 18.10% to 23.68%. This study confirmed that palm granulated sugar prepared at 90 °C for 75 min can have a better product quality with increased vitamin and mineral contents, antioxidant properties, and biological activity, while also being low in 5-hydroxymethylfurfural (HMF) content.


2014 ◽  
Vol 31 (4) ◽  
pp. 245-252 ◽  
Author(s):  
Jovana Veljković ◽  
Jelena Brcanović ◽  
Aleksandra Pavlović ◽  
Snežana Mitić ◽  
Biljana Kaličanin ◽  
...  

Summary While there is a large number of scientific papers reporting chemical composition and biological activities of Aronia melanocarpa, there is a lack information regarding the commercially available bagged tea. In order to supply new information on the antioxidant activity of the Aronia melanocarpa tea infusions, the aim of this study was to evaluate individual phenolic compounds which could be responsible for antioxidant activities of these beverages. Selected anthocyanins (cyanidin-3-O-galactoside, cyanidin-3-O-glucoside, cyanidin- 3-O-arabinoside, and cyanidin-3-O-xyloside), gallic acid, caffeic acid, rutin, morin, and protocatechuic acid were simultaneously detected from commercially available tea infusions using a High Performance Liquid Chromatographic (HPLC) method. The antioxidant activity was measured using five in vitro spectrophotometric methods: 1,1-diphenyl- 2-picrylhydrazyl radical scavenging activity (DPPH), 2,2'-azino-bis (3-ethylbenzthiazoline- 6-sulphonic acid) radical cation scavenging activity (ABTS), ferric reducing-antioxidant power (FRAP) and reduction power (RP)Fe(III) to Fe(II). Obtained results showed that anthocyanins, predominantly of cyanidin-3-O-galactoside, are the major class of polyphenolic compounds in tea infusions. Among phenolic acids the most abundant is caffeic acid. A significant correlation between DPPH and ABTS and FRAP and RP suggested that antioxidant components in these beverages were capable scavenging free radicals and reducing oxidants. Generally, these beverages had relatively high antioxidant capacities and could be important dietary sources of antioxidant phenolics for the prevention of diseases caused by oxidative stress.


Molecules ◽  
2019 ◽  
Vol 24 (4) ◽  
pp. 746
Author(s):  
Claudia Valverde Malaver ◽  
Ana Colmenares Dulcey ◽  
Carlos Rial ◽  
Rosa Varela ◽  
José Molinillo ◽  
...  

A bio-guided study of leaf extracts allowed the isolation of two new macrobicyclic hydrolysable tannins, namely merianin A (1) and merianin B (2), and oct-1-en-3-yl β-xylopyranosyl-(1”-6’)-β-glucopyranoside (3) from Meriania hernandoi, in addition to 11 known compounds reported for the first time in the Meriania genus. The structures were elucidated by spectroscopic analyses including one- and two-dimensional NMR techniques and mass spectrometry. The bioactivities of the compounds were determined by measuring the DPPH radical scavenging activity and by carrying out antioxidant power assays (FRAP), etiolated wheat coleoptile assays and phytotoxicity assays on the standard target species Lycopersicum esculentum W. (tomato). Compounds 1 and 2 exhibited the best free radical scavenging activities, with FRS50 values of 2.0 and 1.9 µM, respectively.


Molecules ◽  
2021 ◽  
Vol 26 (5) ◽  
pp. 1205
Author(s):  
Adesola A. Adeleke ◽  
Sizwe J. Zamisa ◽  
Md. Shahidul Islam ◽  
Kolawole Olofinsan ◽  
Veronica F. Salau ◽  
...  

A series of fifteen silver (I) quinoline complexes Q1–Q15 have been synthesized and studied for their biological activities. Q1–Q15 were synthesized from the reactions of quinolinyl Schiff base derivatives L1–L5 (obtained by condensing 2-quinolinecarboxaldehyde with various aniline derivatives) with AgNO3, AgClO4 and AgCF3SO3. Q1–Q15 were characterized by various spectroscopic techniques and the structures of [Ag(L1)2]NO3Q1, [Ag(L1)2]ClO4Q6, [Ag(L2)2]ClO4Q7, [Ag(L2)2]CF3SO3Q12 and [Ag(L4)2]CF3SO3Q14 were unequivocally determined by single crystal X-ray diffraction analysis. In vitro antimicrobial tests against Gram-positive and Gram-negative bacteria revealed the influence of structure and anion on the complexes′ moderate to excellent antibacterial activity. In vitro antioxidant activities of the complexes showed their good radical scavenging activity in ferric reducing antioxidant power (FRAP). Complexes with the fluorine substituent or the thiophene or benzothiazole moieties are more potent with IC50 between 0.95 and 2.22 mg/mL than the standard used, ascorbic acid (2.68 mg/mL). The compounds showed a strong binding affinity with calf thymus-DNA via an intercalation mode and protein through a static quenching mechanism. Cytotoxicity activity was examined against three carcinoma cell lines (HELA, MDA-MB231, and SHSY5Y). [Ag(L2)2]ClO4Q7 with a benzothiazole moiety and [Ag(L4)2]ClO4Q9 with a methyl substituent had excellent cytotoxicity against HELA cells.


Author(s):  
Gaonan Zhang ◽  
Shujian Zheng ◽  
Yuqi Feng ◽  
Guo Shen ◽  
Shanbai Xiong ◽  
...  

Different kinds of freshwater fish soups show a diverse range of health functions, due to their different nutritional substances and corresponding bioactivities. Crucian carp soup and snakehead soup have different dietotherapy functions, crucian carp soup is suitable for lactating women and snakehead soup is suitable for postoperative patients. In the current study, the changes of nutrient profiles in the different fish soups, such as chemical composition, free amino acids, mineral and fatty acid contents, were investigated. The antioxidant activities of the fish soups were evaluated by using the DPPH radical scavenging activity, the ferrous ion chelating activity, the hydroxyl radical-scavenging activity and the reducing power effect. In order to learn the theoretical basis of the potential role fish soup plays in diet therapy functions after being digested by the human body, the nutrient profiling and bioactivities of the fish soup samples after simulated gastrointestinal digestion were also explored. The intensive profiles of nutritional composition and antioxidant activities of these two kinds of fish soups were expected to partly provide the theoretical basis of therapeutic effects.


Sign in / Sign up

Export Citation Format

Share Document