scholarly journals Detecting Dye-Contaminated Vegetables Using Low-Field NMR Relaxometry

Foods ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 2232
Author(s):  
Sumaiya Shomaji ◽  
Naren Vikram Raj Masna ◽  
David Ariando ◽  
Shubhra Deb Paul ◽  
Kelsey Horace-Herron ◽  
...  

Dyeing vegetables with harmful compounds has become an alarming public health issue over the past few years. Excessive consumption of these dyed vegetables can cause severe health hazards, including cancer. Copper sulfate, malachite green, and Sudan red are some of the non-food-grade dyes widely used on vegetables by untrusted entities in the food supply chain to make them look fresh and vibrant. In this study, the presence and quantity of dye-based adulteration in vegetables are determined by applying 1H-nuclear magnetic resonance (NMR) relaxometry. The proposed technique was validated by treating some vegetables in-house with different dyes and then soaking them in various solvents. The resulting solutions were collected and analyzed using NMR relaxometry. Specifically, the effective transverse relaxation time constant, T2,eff, of each solution was estimated using a Carr–Purcell–Meiboom–Gill (CPMG) pulse sequence. Finally, the estimated time constants (i.e., measured signatures) were compared with a library of existing T2,eff data to detect and quantify the presence of unwanted dyes. The latter consists of data-driven models of transverse decay times for various concentrations of each water-soluble dye. The time required to analyze each sample using the proposed approach is dye-dependent but typically no longer than a few minutes. The analysis results can be used to generate warning flags if the detected dye concentrations violate widely accepted standards for food dyes. The proposed low-cost detection approach can be used in various stages of a produce supply chain, including consumer household.

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1246 ◽  
Author(s):  
Darragh Lydon ◽  
Myra Lydon ◽  
Rolands Kromanis ◽  
Chuan-Zhi Dong ◽  
Necati Catbas ◽  
...  

Increasing extreme climate events, intensifying traffic patterns and long-term underinvestment have led to the escalated deterioration of bridges within our road and rail transport networks. Structural Health Monitoring (SHM) systems provide a means of objectively capturing and quantifying deterioration under operational conditions. Computer vision technology has gained considerable attention in the field of SHM due to its ability to obtain displacement data using non-contact methods at long distances. Additionally, it provides a low cost, rapid instrumentation solution with low interference to the normal operation of structures. However, even in the case of a medium span bridge, the need for many cameras to capture the global response can be cost-prohibitive. This research proposes a roving camera technique to capture a complete derivation of the response of a laboratory model bridge under live loading, in order to identify bridge damage. Displacement is identified as a suitable damage indicator, and two methods are used to assess the magnitude of the change in global displacement under changing boundary conditions in the laboratory bridge model. From this study, it is established that either approach could detect damage in the simulation model, providing an SHM solution that negates the requirement for complex sensor installations.


Heritage ◽  
2021 ◽  
Vol 4 (3) ◽  
pp. 1511-1525
Author(s):  
Lauren Griffith ◽  
Cameron Griffith

The Belizean culinary landscape has experienced a dramatic shift in recent years, with an abundance of “fresh” and “local” dishes (i.e., salads) appearing on restaurant menus. While many tourists appreciate the option of ordering salad, there is a truly local green that might be equally or better suited to the tourist market given what we know about tourists’ interests in both authenticity and healthful eating. This paper explores both host and guest attitudes towards chaya, a leafy green that is high in protein and may have anti-diabetic properties. We argue that tourists enjoy eating chaya but restauranteurs are not taking advantage of its potential as a sustainable, low-cost dish that could also help preserve traditional foodways. Though restauranteurs are apt to cite supply chain issues as one of the reasons they are reluctant to make chaya a menu mainstay, we also believe that when a food occupies an ambiguous place in the local foodscape—as chaya does—local hosts may be unable to leverage it to is full potential.


AMB Express ◽  
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Genan Wang ◽  
Bingyi Shi ◽  
Pan Zhang ◽  
Tingbin Zhao ◽  
Haisong Yin ◽  
...  

Abstractβ-poly(l-malic acid) (PMLA) is a water-soluble biopolymer used in medicine, food, and other industries. However, the low level of PMLA biosynthesis in microorganisms limits its further application in the biotechnological industry. In this study, corn steep liquor (CSL), which processes high nutritional value and low-cost characteristics, was selected as a growth factor to increase the PMLA production in strain, Aureobasidium melanogenum, and its metabolomics change under the CSL addition was investigated. The results indicated that, with 3 g/L CSL, PMLA production, cell growth, and yield (Yp/x) were increased by 32.76%, 41.82%, and 47.43%, respectively. The intracellular metabolites of A. melanogenum, such as amino acids, organic acids, and key intermediates in the TCA cycle, increased after the addition of CSL, and the enrichment analysis showed that tyrosine may play a major role in the PMLA biosynthesis. The results presented in this study demonstrated that the addition of CSL would be an efficient approach to improve PMLA production.


2017 ◽  
Vol 10 ◽  
pp. 1-15
Author(s):  
P. Morais Pessôa ◽  
A.G. Barbosa de Lima ◽  
R. Swarnakar ◽  
J.P. Gomes ◽  
W.M.P. Barbosa de Lima

Cooling has been used for the preservation of fresh produce such as fruit and vegetables due to its low cost and high effectiveness in maintaining the product quality. Recently, several researchers have conducted theoretical and experimental studies for obtaining the kinetics of cooling and cooling time for fruits with different geometries. Present work, therefore, aims to simulate the cooling of fruits with particular reference to banana, orange, strawberry and Tahiti lemon. The transient heat conduction equation and its analytical solution using Galerkin based integral method are presented. It has been found that the strawberry has lower dimensionless cooling time compared with time required to cool other fruits, which is due to its higher surface area/volume ratio value. In orange and lemon the temperature distribution was found to be homogeneous in the angular direction, while in banana and strawberry it was two-dimensional due to shape of the fruits.


Sensors ◽  
2018 ◽  
Vol 18 (7) ◽  
pp. 2259 ◽  
Author(s):  
Abhiram Mullapudi ◽  
Matthew Bartos ◽  
Brandon Wong ◽  
Branko Kerkez

“Smart” water systems are transforming the field of stormwater management by enabling real-time monitoring and control of previously static infrastructure. While the localized benefits of active control are well-established, the potential for system-scale control of watersheds is poorly understood. This study shows how a real-world smart stormwater system can be leveraged to shape streamflow within an urban watershed. Specifically, we coordinate releases from two internet-controlled stormwater basins to achieve desired control objectives downstream—such as maintaining the flow at a set-point, and generating interleaved waves. In the first part of the study, we describe the construction of the control network using a low-cost, open-source hardware stack and a cloud-based controller scheduling application. Next, we characterize the system’s control capabilities by determining the travel times, decay times, and magnitudes of various waves released from the upstream retention basins. With this characterization in hand, we use the system to generate two desired responses at a critical downstream junction. First, we generate a set-point hydrograph, in which flow is maintained at an approximately constant rate. Next, we generate a series of overlapping and interleaved waves using timed releases from both retention basins. We discuss how these control strategies can be used to stabilize flows, thereby mitigating streambed erosion and reducing contaminant loads into downstream waterbodies.


2020 ◽  
Author(s):  
Zhengyi Li ◽  
Xiangyu Du ◽  
Xiaojing Liao ◽  
Xiaoqian Jiang ◽  
Tiffany Champagne-Langabeer

BACKGROUND Opioid use disorder presents a public health issue afflicting millions across the globe. There is a pressing need to understand the opioid supply chain to gain new insights into the mitigation of opioid use and effectively combat the opioid crisis. The role of anonymous online marketplaces and forums that resemble eBay or Amazon, where anyone can post, browse, and purchase opioid commodities, has become more and more important in opioid trading. Therefore, a greater understanding of anonymous markets and forums may enable public health officials and other stakeholders to comprehend the scope of the crisis. OBJECTIVE The objective of this work is to profile the opioid supply chain in anonymous markets and forums via a large-scale, longitudinal measurement study on anonymous market listings and posts. Toward this, we propose a series of techniques to collect data, to identify opioid jargon terms used in the anonymous marketplaces and forums, and to profile the opioid commodities, suppliers, and transactions. METHODS We first conducted a whole-site crawl of anonymous online marketplaces and forums to solicit data. Then, we developed a suite of opioid domain-specific text mining techniques (e.g., opioid jargon detection, opioid trading information retrieval) to recognize information relevant to opioid trading activities (e.g., commodities, price, shipping information, suppliers, etc.). After that, we conducted a comprehensive, large-scale, longitudinal study to demystify opioid trading activities in anonymous markets and forums. RESULTS A total of 248,359 listings from 10 anonymous online marketplaces and 1,138,961 traces (i.e., threads of posts) from 6 underground forums were collected. Among them, we identified 28,106 opioid product listings and 13,508 opioid-related promotional and review forum traces from 5147 unique opioid suppliers’ IDs and 2778 unique opioid buyers’ IDs. Our study characterized opioid suppliers (e.g., activeness and cross-market activities), commodities (e.g., popular items and their evolution), and transactions (e.g., origins and shipping destination) in anonymous marketplaces and forums, which enabled a greater understanding of the underground trading activities involved in international opioid supply and demand. CONCLUSIONS The results provide insight into opioid trading in the anonymous markets and forums, and may prove an effective mitigation data point for illuminating the opioid supply chain.


1989 ◽  
Vol 145 ◽  
pp. 11-13
Author(s):  
P Schiøler

Density separation of mineral and sediment grains into fractions using heavy liquids traditionally employs organic compounds such as bromoform (density 2.89) and tetrabromoethane (density 2.96) which are known to be toxic even at very low concentrations (Van Haaften, 1969) and possibly carcinogenic. In addition, the separated grains are washed with organic solvents such as acetone which may be highly inflammable, and are also a health risk. In recent years, a new water soluble compound, sodium polytungstate (SPT), 3Na2WO4.9WO3.H2O, has become available as a medium for heavy liquid separations, offering an alternative to the heavy organic liquids. Hs use has been discussed by several workers (e.g. Plewinsky & Kamp, 1984; Krukowski, 1988) in a variety of geological settings. The present note summarises experience in GGU's palaeontological laboratory gained from working with SPT for a full year as a replacement for tetrabromoethane and bromoform in the separation of phosphatic microfossils from samples principally of Lower - Middle Cambrian age. Apart from improving the work environment by replacing high health-risk chernicals with water soluble products without known detrimental effects, SPT has proved to be both an economical and potentially efficient alternative to the organic heavy liquids. SPT is patented, and only available from Sometu, Falkenried 4, D 1000 Berlin 33, Federal Republic of Germany.


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


2020 ◽  
Author(s):  
Luqman Hakim Mohd Azmi ◽  
Daryl R. Williams ◽  
Bradley P. Ladewig

<div><b>Abstract</b></div><div>A new synthesis method was developed to prepare an aluminum-based metal organic framework (MIL-96) with a larger particle size and different crystal habits. A low cost and water-soluble polymer, hydrolyzed polyacrylamide (HPAM), was added in varying quantities into the synthesis reaction to achieve >200% particle size enlargement with controlled crystal morphology. The modified adsorbent, MIL-96-RHPAM2, was systematically characterized by SEM, XRD, FTIR, BET and TGA-MS. Using activated carbon (AC) as a reference adsorbent, the effectiveness of MIL-96-RHPAM2 for perfluorooctanoic acid (PFOA) removal from water was examined. The study confirms stable morphology of hydrated MIL-96-RHPAM2 particles as well as a superior PFOA adsorption capacity (340 mg/g) despite its lower surface area, relative to standard MIL-96. MIL-96-RHPAM2 suffers from slow adsorption kinetics as the modification significantly blocks pore access. The strong adsorption of PFOA by MIL-96-RHPAM2 was associated with the formation of electrostatic bonds between the anionic carboxylate of PFOA and the amine functionality present in the HPAM backbone. Thus, the strongly held PFOA molecules in the pores of MIL-96-RHPAM2 were not easily desorbed even after eluted with a high ionic strength solvent (500 mM NaCl). Nevertheless, this simple HPAM addition strategy can still chart promising pathways to impart judicious control over adsorbent particle size and crystal shapes while the introduction of amine functionality onto the surface chemistry is simultaneously useful for enhanced PFOA removal from contaminated aqueous systems.<br></div>


Revista Vitae ◽  
2021 ◽  
Vol 28 (3) ◽  
Author(s):  
Laura Carvajal Barbosa ◽  
Diego Insuasty Cepeda ◽  
Andrés Felipe León Torres ◽  
Maria Mercedes Arias Cortes ◽  
Zuly Jenny Rivera Monroy ◽  
...  

BACKGROUND : Biosensing techniques have been the subject of exponentially increasing interest due to their performance advantages such as high selectivity and sensitivity, easy operation, low cost, short analysis time, simple sample preparation, and real-time detection. Biosensors have been developed by integrating the unique specificity of biological reactions and the high sensitivity of physical sensors. Therefore, there has been a broad scope of applications for biosensing techniques, and nowadays, they are ubiquitous in different areas of environmental, healthcare, and food safety. Biosensors have been used for environmental studies, detecting and quantifying pollutants in water, air, and soil. Biosensors also showed great potential for developing analytical tools with countless applications in diagnosing, preventing, and treating diseases, mainly by detecting biomarkers. Biosensors as a medical device can identify nucleic acids, proteins, peptides, metabolites, etc.; these analytes may be biomarkers associated with the disease status. Bacterial food contamination is considered a worldwide public health issue; biosensor-based analytical techniques can identify the presence or absence of pathogenic agents in food. OBJECTIVES: The present review aims to establish state-of-the-art, comprising the recent advances in the use of nucleic acid-based biosensors and their novel application for the detection of nucleic acids. Emphasis will be given to the performance characteristics, advantages, and challenges. Additionally, food safety applications of nucleic acid-based biosensors will be discussed. METHODS: Recent research articles related to nucleic acid-based biosensors, biosensors for detecting nucleic acids, biosensors and food safety, and biosensors in environmental monitoring were reviewed. Also, biosensing platforms associated with the clinical diagnosis and food industry were included. RESULTS: It is possible to appreciate that multiple applications of nucleic acid-based biosensors have been reported in the diagnosis, prevention, and treatment of diseases, as well as to identify foodborne pathogenic bacteria. The use of PNA and aptamers opens the possibility of developing new biometric tools with better analytical properties. CONCLUSIONS: Biosensors could be considered the most important tool for preventing, treating, and monitoring diseases that significantly impact human health. The aptamers have advantages as biorecognition elements due to the structural conformation, hybridization capacity, robustness, stability, and lower costs. It is necessary to implement biosensors in situ to identify analytes with high selectivity and lower detection limits.


Sign in / Sign up

Export Citation Format

Share Document