scholarly journals Bridge Damage Detection Approach Using a Roving Camera Technique

Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1246 ◽  
Author(s):  
Darragh Lydon ◽  
Myra Lydon ◽  
Rolands Kromanis ◽  
Chuan-Zhi Dong ◽  
Necati Catbas ◽  
...  

Increasing extreme climate events, intensifying traffic patterns and long-term underinvestment have led to the escalated deterioration of bridges within our road and rail transport networks. Structural Health Monitoring (SHM) systems provide a means of objectively capturing and quantifying deterioration under operational conditions. Computer vision technology has gained considerable attention in the field of SHM due to its ability to obtain displacement data using non-contact methods at long distances. Additionally, it provides a low cost, rapid instrumentation solution with low interference to the normal operation of structures. However, even in the case of a medium span bridge, the need for many cameras to capture the global response can be cost-prohibitive. This research proposes a roving camera technique to capture a complete derivation of the response of a laboratory model bridge under live loading, in order to identify bridge damage. Displacement is identified as a suitable damage indicator, and two methods are used to assess the magnitude of the change in global displacement under changing boundary conditions in the laboratory bridge model. From this study, it is established that either approach could detect damage in the simulation model, providing an SHM solution that negates the requirement for complex sensor installations.

2021 ◽  
Author(s):  
Evangelos Skoubris ◽  
George Hloupis

<p>Among all natural disasters, river floods are becoming increasingly frequent. They present high risk and their impact can be fairly destructive and of strong economic, health, and social importance. Key tools to avoid their catastrophic results are the Early Warning Systems (EWS). An EWS usually monitors various physical quantities through a specific hardware, and produce data which after certain processing can detect and estimate the level of the risk.</p><p>In the current work we present the concept, the design, the application, and some preliminary data regarding a low cost imaging node, part of an EWS aimed for river floods. This EWS consists of various sensing nodes which are mainly equipped with water presence detectors, water level meters, water temperature sensors, along with the necessary networking capability. The novelty of this new node design is that it utilizes a VGA resolution camera which captures still images of a view of interest. The latter can be for example an implementation prone to defects in case of flood, such as a river basin level road crossing, or a bridge. The images can also provide constant monitoring of the river basin state, i.e. to detect the presence of any unwanted objects (waste or other natural & artificial bring materials). Through image processing the images can even provide some coarse data, i.e. water level measurements by utilizing vertical stripped rods within the field of view of the camera.</p><p>The ability to have a camera usually counteracts the IoT characteristics of an electronic device. Nevertheless, in this design the IoT character of the node was not constrained. The nodes have extended power autonomy (several months via Li-Ion battery, optionally solar rechargeable), present a small size, each node is network independent using GSM and LoRaWAN technology. The data usage is minimized by uploading only 2 QVGA images per day in normal operation (can be increased to a maximum of 48 VGA images per day, if required). In case of risk detection the node also supports the actuation of a local warning sign.</p>


2021 ◽  
Author(s):  
Quankun Li ◽  
Zengde Shao ◽  
Mingfu Liao

Abstract Because of some advantages such as low cost, detachability and reusability, bolted joints are widely applied in various open beam-like engineering structures like steel beams and train rails and closed ring-type engineering structures like steel frames and oil pipelines to keep different structural components together. However, bolted engineering structures often encounter vibration-induced joint faults like self-loosening, crack, leakage and corrosion since they are generally subjected to external dynamic loads caused by vibration environments. Joint damages would seriously affect structures’ reliability and durability, and increase maintenance costs. Therefore, fault detection of bolted engineering structures is very important and necessary. For beam-like and ring-type engineering structures with single excitation and multiple damaged bolted joints, various methods monitoring changes in nonlinear structural features have been developed. To avoid the use of structural features from benchmark structures for reference during the derivation of damage indicators, a novel vibration-based fault detection approach utilizing features from damaged structures only is proposed in this study. In the new method, the dynamic model of bolted engineering structures is simplified as a general MDOF model with nonlinear elements simulating nonlinear bolt loosening faults. By changing the value of related mass, three similar equations from the damaged structure are used to form one matrix, and then the singularity of matrix is used to detect the existence and position of faults. Results from simulations on the beam-like and ring-type models with multiple damages demonstrate that the proposed approach could be an effective tool to estimate the state of bolted engineering structures.


Author(s):  
Victor Odhiambo Shikuku ◽  
Wilfrida N. Nyairo

The search for efficient and sustainable wastewater treatment technologies is a subject of continuing research. This is due to the emergence of new classes of water contaminants that are recalcitrant to the conventional wastewater treatment technologies and the stringent allowable limits for contaminant levels set by environmental management authorities. The chapter discusses the developments in synthesis methods and application of polymer-metal oxides as emerging facile materials for wastewater treatment. The varying uses of polymer-metal oxides for different processes in water treatment under varying operational conditions and their performance for different pollutants are critically analyzed. Their strengths and inherent limitations are also highlighted. The chapter demonstrates that polymer-metal oxides are facile low-cost and efficient materials and can be integrated in wastewater and drinking water treatment systems.


1994 ◽  
Vol 30 (3) ◽  
pp. 149-155
Author(s):  
M. Muñiz ◽  
A. G. Lavin ◽  
M. Díaz

In SBR processes, the start-up operation is of considerable interest, not only because of the effect of the efficiency on normal operation, but also because of the cost of the transport of sludge seed and the related feeding time with artificial substrate. The selection of the strategy bas not been studied previously as far as we know, although it is a problem of considerable economic importance. This is not only a problem of the relation between seed magnitude and the start-up timing, but also the effect on the process efficiency. The start-up in SBRs is more frequent than in conventional activated sludge when considering SBRs are mainly used for industrial wastewater treatment, where there are more stops and changes of organic load. A start-up strategy for SBR biological treatment of industrial wastewater with several complex organic components, based on two steps (Filling and Conditioning Periods), bas been proposed and put into operation in a pilot plant column. The strategy looks for minimum time to achieve high steady state efficiency, and low cost of implementation, and sludge seeding. It makes a provision for feed on the basis of inhibition potential and organic needs, and introduces instructions during the operation, depending on the results being obtained. The results of this strategy using a complex organic high salinity water are presented. The presence in this case of two types of solvents and very high salts concentration has been a good test problem for the proposed strategy because of the necessity of multiple adaptation of sludge and the considerably difficult problem to be solved.


Author(s):  
C. Bharatiraj ◽  
JL Munda ◽  
Ishan Vaghasia ◽  
Rajesh Valiveti ◽  
P. Manasa

The DC motors an outstanding portion of apparatus in automotive and automation industrial applications requiring variable speed and load characteristics due to its ease of controllability. Creating an interface control system for multi DC motor drive operations with centralized speed control, from small-scale models to large industrial applications much demand. By using Lab VIEW (laboratory virtual instrument engineering workbench) as the motor controller, can control a DC motor for multiple purposes using single software environment. The aim of this paper is to propose the centralized speed control of DC motor using Lab VIEW. Here, the Lab VIEW is used for simulating the motor, whereas the input armature voltage of the DC motor is controlled using a virtual Knob in Lab VIEW software. The hardware part of the system (DC motor) and the software (in personal computer) are interfaced using a data acquisition card (DAQ) -Model PCI- 6024E. The voltage and Speed response is obtained using LABVIEW software. Using this software, group of motors’ speed can be controlled from different location using remote telemetry. The propose work also focuses on controlling the speed of the individual DC motor using PWM scheme (Duty cycle based Square wave generation) and DAQ. Help of the DAQ along with Lab VIEW front panel window, the DC motor speed and directions can be change easily in remote way. In order to test the proposed system the laboratory model for an 80W DC motor group (multi drive) is developed for different angular displacements and directions of the motor. The simulation model and experimental results conforms the advantages and robustness of the proposed centralized speed control.


Author(s):  
Kenneth S. Watkins

As insulation systems of power system components such as electrical motors, generators and transformers degrade, they become brittle, crack and, eventually, fail to perform their intended function. Failure of the insulation system of these components often leads to costly power interruptions that could be prevented if the actual condition of the insulation system is known. The degradation mechanisms of modern insulation systems are highly dependent on the actual environmental and operational conditions of the component. Current methods to measure insulation system condition are often complex, expensive and require specialized training to interpret. In contrast, conductive composite sensors made of the same polymeric components as the insulation system itself monitor the actual environmentally and operationally induced degradation of the component insulation and provide a quick, objective indication of the current condition and remaining design life of the insulation. This innovative technology utilizes low-cost, inert conductive particles compounded with a portion of the insulation polymer to provide a tiny degradation sensor embedded into the winding, core or stator of the component. Sensor output correlates with the degraded state of the insulation system relative to standard industry thermal endurance testing, giving advanced warning of a degraded condition of the insulation system before design conditions are exceeded. Maintenance personnel, utilizing a simple ohmmeter, can read sensor output quickly and reliably without specialized equipment or training. Alternately, threshold-warning devices connected to the sensor provide constant monitoring. Conductive composite degradation sensors provide advance warning of prematurely degraded insulation systems and reduce the need for complex, intrusive and sometimes destructive electrical testing. Because conductive composite degradation sensors require no electrical power during the aging process, they are ideally suited to wireless, passive radio frequency identification (RFID), and “smart label” technologies.


Author(s):  
Basant K. Parida ◽  
James Carter ◽  
Abdullatif K. Zaouk ◽  
John Punwani

Diesel fuel carriage in locomotives, while safe in normal operational conditions, presents a potential hazard in the event of serious accident or derailment. Development of an effective mitigation method against this hazard requires an understanding of operational conditions that lead to fuel spill and fire. This paper describes a study of fire hazard stemming from rail accidents and potential approaches to mitigation. Data for the study was obtained from a large sample of National Transportation Safety Board (NTSB) investigation reports for accidents involving both freight and passenger locomotive accidents over a 10-year period. Approximately 25% of the events reviewed resulted in fuel release. In addition, of the events that resulted in fuel loss, a large majority (almost 70%) resulted in fire. Most cases with major fires led to loss of life and/or property, including destruction of multiple locomotives. Typical road locomotives carry 3,000–4,500 gallons of diesel fuel during normal operation. As the locomotive consumes fuel, large volumes are available for vapor generation within the tank. In a post-collision scenario, the vapor that vents to the atmosphere at temperatures close to flash point of the fuel presents a significant fire hazard. Further, flammable mists can be generated by the sprays that develop due to fuel leaks from the post-impact movement of a train. Previous laboratory tests on a scaled tank demonstrated that fire in a fuel-rich vapor can flash back inside the tank causing an explosion or a large fire. This paper also assesses potential technologies to prevent or mitigate fire hazards in locomotive fuel tanks. These include fuel tank leak prevention or reduction of outflow from breached fuel tanks, monitoring vapor concentration within fuel tanks, and limiting vapor concentrations inside tank to maintain levels below the Lower Explosive Limit (LEL). Potential benefits of the latter method include minimization of pollution from escaping vapor as well as partial recovery of reusable fuel from vapor.


2012 ◽  
Vol 2012 ◽  
pp. 1-6 ◽  
Author(s):  
Kuang-Hui Tang ◽  
Kuei-Hsiang Chao ◽  
Yuan-Wei Chao ◽  
Jyun-Ping Chen

Proposed in this paper is the development of a photovoltaic module simulator, one capable of running an output characteristic simulation under normal operation according to various electrical parameters specified and exhibiting multiple advantages of being low cost, small sized, and easy to implement. In comparison with commercial simulation tools, Pspice and Solar Pro, the simulator developed demonstrates a comparableI-Vas well as aP-Voutput characteristic curve. In addition, a series-parallel configuration of individual modules constitutes a photovoltaic module array, which turns into a photovoltaic power generation system with an integrated power conditioner.


2009 ◽  
Vol 26 (8) ◽  
pp. 1558-1571 ◽  
Author(s):  
V. E. Cachorro ◽  
A. Berjón ◽  
C. Toledano ◽  
S. Mogo ◽  
N. Prats ◽  
...  

Abstract Aerosol optical depth (AOD) using different instruments during three short and intensive campaigns carried out from 1999 to 2001 at El Arenosillo in Huelva, Spain, are presented and compared. The specific aim of this study is to determine the level of agreement between three different instruments running in operational conditions. This activity, however, is part of a broader objective to recover an extended data series of AOD in the UV range obtained from a Brewer spectroradiometer. This instrument may be used to obtain AOD at the same five UV wavelengths used during normal operation for ozone content determination. As part of the validation of the Brewer AOD data, a Cimel sun photometer and another spectroradiometer, a Li-Cor 1800, were used. A detailed comparison of these three instruments is carried out by means of near-simultaneous measurements, with particular emphasis on examining diurnal AOD variability. Absolute AOD uncertainties range from 0.02 for the Cimel to 0.08 for the Brewer, with intermediate values for the Li-Cor 1800. All data during the comparison are in reasonable agreement, when taking into account the different performance characteristics of each instrument. The comparison also demonstrates current deficiencies in the Brewer data and thus the difficulty to determine AOD values with low errors.


Sign in / Sign up

Export Citation Format

Share Document